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ABSTRACT 

Overload communication in the IoT network is one of the reasons a Smart city-based IoT was 
failed. The continuously capturing data from sensors into the IoT network are generating massive data. 
The data collected often has some spatial or temporal redundancy and is unnecessary, which can be 
eliminated. Two popular approaches for this issue: data compression and reduce data transmission. 
Previous studies have proposed a Dual Prediction (DP) method in Spatio-temporal correlation on 

sensors' data in the Wireless Sensors Networks (WSNs) to reduce data transmission using Machine and 
Deep Learning techniques.  Therefore, this study aims to reduce data transmission for an atmospheric 
IoT application using deep learning. The experiments were conducted on three stations Malaysia 
Atmospheric datasets: Putrajaya, Petaling Jaya, and Tanjung Malim, in which each station consists of 
five attributes: Temperature, Humidity, Wind Speed, NO2, and NOx.  Three LSTM algorithms are used 
to investigate the best prediction model for each attribute: Stack LSTM, Bi-directional LSTM (BiD 
LSTM), and Convolutional LSTM (ConvLSTM). The experiment applied ten times run of walk-forward 

validation method for each attribute using MAPE measurement.  The result shows ConvLSTM 
algorithm has consistently shown the best model on Putrajaya and Tanjung Malim datasets.  Later, the 
ConvLSTM prediction model has been used to forecast data for all three stations. The experiment 
results showed that ConvLSTM had reduced temperature transmission data for Putra Jaya, Petaling 
Jaya, and Tanjung Malim by about 69.5%,  67.31%, and 70.5%, respectively. It also reduced Wind 
Speed 77.4%, 38.95% and 73.57% and Humidity 19.8%,  10.9% and 12.5% respectively with 0.5  
threshold. Furthermore, it reduces NOx by about 52.9%, 21.86%, 74.6%, and reduced NO2  and 73.1%, 

69.24%, and 93.22% for Putra Jaya, Petaling Jaya, and Tanjung Malim, respectively, with a 0.005 
threshold.  Based on the best accuracy result of Putrajaya, it can be concluded that deep learning has 
contributed to reducing IoT data transmission from up to 77.40%. 
 
Keywords: Data transmission reduction, Deep learning techniques, Stack LSTM, Bi-directional 
LSTM, Convolutional LSTM, Time series forecasting, Wireless Sensors Networks, IoT network 

 

I. INTRODUCTION 

The Internet of Things (IoT) is a global network that connects a wide range of hardware and people 

using advanced information and communication technologies. The smart city is one of the applications 

of the IoT that aims to improve the quality of human life. Many industrial, health, and service 

applications can be managed and monitored intelligently within the smart city through Wireless Sensor 

Networks. WSNs are essential for smart city applications and IoT systems because they are the main 

data capture source through sensors. 
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One of the most important applications that use WSNs is Monitoring applications. Through 

monitoring applications, data around changes are collected in environments such as factories, hospitals, 

and weather-tracking stations. In monitoring applications, sensor nodes generate vast volumes of critical 

data that must be transmitted continuously over long periods of time in order to be used for effective 

action and decision-making. Due to the increase in human needs and the applications of smart cities, 

the number of sensors within WSNs is constantly increasing, thus collecting larger amounts of data. 

Therefore, Smart City applications may suffer delays in work or downtime for some time. As a result 

of the loss or congestion of the large data accumulated on communication lines, which need speed in 

transmission, processing, and analysis. 

Some of these data are related in time and place due to their physical nature, and they are in the 

form of time series that were collected chronologically or sequentially. Moreover, some of the temporal 

or spatial correlation readings that are collected do not bear exclusive information or can be extracted 

from previous readings. Therefore, preventing unnecessary data transfers in a network has a significant 

impact on reducing the energy consumption of devices and reducing the congestion and the cost of 

communications in the smart city (He et al. 2014). 

Data prediction technique is one way to manage the vast amount of data in WSNs. It means 

predicting new data from the previous data collected from sensor nodes. However, one key concern is 

to ensure the accuracy of the prediction within a user-given error bound (Wu et al. 2016). Several 

studies, such as Azar et al. (2019), highlighted these issues to address them to reduce the congestion 

communication and increase the efficiency of the IoT by transferring the data in a correct and timely 

manner. 

Dias et al. (2016) simulated a self-managed WSN network that used the AI technique. State-

of-the-art prediction algorithm used in this simulation to reduce the data transmission. Wu et al. (2016) 

applied three techniques (prediction, compression, and recovering) in their proposed framework to 

reduce data transmission and communication costs using Least Mean Square (LMS) and LMS with 

Optimal Step Size (OSSLMS) models. Jarwan et al. (2019) applied the DP  on their proposed framework 

of WSN to save the lifetime of the sensor and improving communication using NNs and LSTM models. 

In short, our problem is almost similar to the previous studies which aim to reduce the data 

transmission, but we focus on IoT network in which an intelligent IoT is developed to reduce the 

transmission of unnecessary data. Therefore, this research aims to develop a sensor forecasting model 

using deep learning by only allowing data transmission greater than a threshold. This paper aims to 

propose three LSTM deep learning models (Stacked LSTM, Bi-Directional LSTM, and Convolutional 
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LSTM) using Malaysia Atmospheric dataset; and to evaluate the models and use the best one for IoT 

sensor prediction to reduce the data transmission. 

This paper consists of five (5) sections. Section I discuss the background of this study.  Section 

II reviews the literature review and related works. Section III introduces the method used in the study. 

Section IV presents the results of the work and discussion. Lastly, section V concludes the paper with 

a summary of the findings and recommended future work. 

II. LITERATURE REVIEW 

A. METHODS TO REDUCE  DATA TRANSMISSIONS BASED ON WSN 

Two methods, namely Data prediction and Data compression, have been used to reduce the data 

transmission in clustered WSNs. WSN is located within the first level of the IoT architecture. The 

Clustered WSN contains several normal sensor nodes and a head per cluster. The Cluster Head (CH) 

connects the normal sensor nodes with the gateway (GW) (Dias et al. 2016). 

Data compression means reduce the size of data. In general, the data compression approach can 

classify into two main methods: lossless compression, which ensure information is correct during the 

compression and decompression process, and the lossy data compression algorithms, which lead to 

some loss of the original data after the decompression operation (Wu et al. 2016). Jarwan et al. (2019) 

and Wu et al. (2016) have implanted Principal Component Analysis (PCA) to compress and recover 

previously predicted data. 

Data prediction means predicting future values based on previous historical data or inferring 

lost values in a data set by experimental probability or statistics. (Dias et al. 2016). Two prediction 

schemes were used to reduce the data transmission in WSNs. One is the Single Prediction Schemes 

(SPSs); the other is the Dual Prediction Schemes (DPSs) (Zhang et al. 2018).  SPSs mean the predictions 

are made in a single point in WSN like sensor nodes or CHs. CHs can predict the data collected by 

sensor nodes. Sensor nodes will anticipate changes in their environments to prevent unnecessary 

measurements, thus avoid their transmissions. In SPSs, each device will determine by itself whether or 

not to use predictions. In DPSs, the prediction operations are made in two endpoints at the same time. 

For example, in the sensing node and its CH. The purpose of DPSs is to avoid unnecessary data 

transmissions. The same prediction algorithm is implemented on both endpoints. So, if the predicted 

data in the sensing node is of high accuracy and falls below the threshold value, the sensing node 

prevents the data transmission, and the predicted data on CH is used instead. Whereas, if the data 

predicted by algorithms fall outside the threshold value, the sensor node will read accurate data from 
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the environment surrounding it and sent the data to CH. (Dias et al. 2016). Dias et al. (2016) applied 

state-of-the-art algorithms to perform Single Prediction Schemes and Dual Prediction Schemes to 

reduce data transmission and achieved acceptable results. 

B.  TIME SERIES PREDICTION METHODS 

Different models have been used to conduct a time series prediction, like Auto-Regressive Integrated 

Moving Average (ARIMA), machine and deep learning models. Siami-Namini et al. (2018) have 

introduced and tested ARIMA and Long Short Term Memory (LSTM) on a collection of financial data. 

The results were revealing that the LSTM-based algorithm outperformed ARIMA by 85% on average. 

So, LSTM demonstrated superiority over ARIMA. Similarly, Zhang et al. (2018) proved that LSTM 

based method produced higher prediction accuracy comparing with ARIMA in terms of time series 

analysis and forecasting. In the same manner, Kelany et al. (2020) used LSTM, Logistic Regression, 

and Random Forest to predict future prices stocks. The results showed that the LSTM model is better 

than other traditional techniques for all stock categories across various time periods. Furthermore, Thai-

Nghe et al. (2020) used Simple LSTM and Stack LSTM. The results using RMSE showed that the Stack 

LSTM model achieved better results compared to the simple model and the LSTM models showed 

better results than the SVM baseline regression model.  

C. RELATED WORK ON IOT DATA TRANSMISSION BASED ON  WSNS 

(Wu et al. 2016) applied three techniques (prediction, compression, and recovering) to reduce data 

transmission and communication costs in their proposed framework while guaranteeing data prediction 

and processing accuracy in clustered WSNs. Two dual prediction algorithms were used to predict the 

data in the sensor node and CH. One is the LMS, and the second is LMS with OSSLMS that minimizing 

the mean-square derivation (MSD). After that, a centralized PCA technique was used to implement the 

compression and recovery for the predicted data on the CHs and the Sink in the Clustered WSN. Thus, 

prevent the spatial redundancy of the sensed data and reduce the communication cost.  

State-of-the-art algorithms were applied for predictions to perform SPSs and DPSs. In an 

improved WSN structure which integrated artificial intelligence technologies. A Reinforcement 

Learning technique called Q-Learning technology was used in the study semulation. The results reduce 

data transmissions and improving communication within the WSNs networks by 92%, assuming the 

evolution of the sensor specifications and keeping data quality (Dias et al. 2016). However, this study 

did not provide sufficient details about the simulation process, the data used, or the prediction 

algorithms. 
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A based on bidirectional LSTM called Multi-Node Multi-Feature (MNMF) was presented by 

Cheng, Xie, Wu, et al. (2019) to eliminate unnecessary data transfer within the WSN. Temperature, 

Humidity, light, voltage, date, time, timestamp, and node ID are included among the 2.3 million pieces 

of sensory data collected from 54 nodes in the collection used in this study. The proposed model was 

compared to three neural network prediction models: Elman network, a recurrent neural network with 

local memory units and local feedback connections, GRNN (general regression neural network), and 

NARX (nonlinear autoregressive exogenous model). The proposed model outperformed the Elman, 

GRNN, and NARX models on the MAPE measurement, with an error rate of 0.318 compared to 0.698 

for Elman, 0.328 for GRNN, and 1.17 for NARX. However, The prediction approach used in this paper 

depended on multiple nodes and multip features. They used the models to analyze data from Intel 

Berkeley Research Laboratory's defined distributed WSN network, which comprises 54 sensor nodes. 

 (Jarwan et al. 2019), tried to prevent unnecessary data transfer to save energy and bandwidth 

in WSNs. To achieve their goal, the researchers applied Dual Prediction and Data Compression schemes 

on a clustered WSN. OSSLMS, Long Short-Term Memory networks (LSTMs), and Neural Networks 

(NNs) models were used as Time-series prediction algorithms to implement the prediction scheme. 

Readings for temperature values with 30-second intervals were included in the data set used in this 

experiment. The simulations were run on the first 600 temperature values obtained. The result revealed 

that both NNs and LSTMs perform better than the OSSLMS algorithm regarding Transmission 

Reduction Percentage (TRP). TRP means how many data point transmissions were not carried because 

they were accurately predicted.  the TRP for the total nodes in 54 WSN are as following: LSTM =51:2%, 

for NNs=51:1%, and 48:3% for OSSLMS. Whereas the average MSE is 0.00372 for all three 

algorithms.  Moreover, the study proved that deep learning models perform better than OSSLMS in 

prediction processes. However, since the dual predictions relied on the correlation of data, the 

performance of these models may vary from one environment to another. On the other hand, the 

hyperparameters of the chosen model significantly affect the model's performance. 

Briefly, most of the studies reviewed above have used different methods to reduce data 

transmission using time series prediction in WSNs. So, these studies were restricted to their WSNs 

frameworks.  

III. METHOD 

The research design that has been followed in this paper is provided in this section. By applying these 

steps, the study objectives have been achieved. The main stages of this research approach that have 

been taken are shown below: 
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• Stage 1: Preparing datasets.  

➢ Dataset Description. 

➢ Datasets Preprocessing. 

• Stage 2: Implementation. 

• Stage 3: Evaluation and Comparison Results.  

• Stage 4: Data Transmission Reduction. 

A. Preparing datasets 

i) Dataset Description 

The dataset that used in this paper is Malaysia Atmospheric Dataset for the year 2016. It is time-series 

data that represented hourly sensor readings. It is a cleaned data. The dataset contains data for three 

stations representing three places: Putrajaya, Petaling Jaya, and Tanjung Malim. Each station includes 

five attributes of hourly sensor readings, which are: Temperature, Humidity, Wind Speed, Nitrogen 

Oxides (NOx), and Nitrogen Dioxide (NO2). The total number of instances for each attribute in all 

stations is (8784). 

ii) Dataset Preprocessing  

Preprocessing data is a data mining technique for transforming raw data into a usable and efficient 

format. Data normalization, splitting the dataset, and dataset restructuring were applied to prepare the 

dataset forecasting processing in this study. 

a. Dataset Normalization  

Data normalization is one of the preprocessing approaches. The main purpose of data normalization is 

to ensure the quality of the data before it is given to any learning algorithm. Data normalization can be 

used to minimize bias within the learning models. Data normalization can also speed up training time 

by starting the training process within the same data scale. In this study, the data was scaled in a range 

between 0 and 1 (Brownlee 2017). 

b. Splitting Dataset 

In this paper, the station's datasets are divided into 80% as a training set and 20% as a testing set. The 

total instance number of the train data for each station attribute is (7027) and (1756) for testing. 

c. Restructure the dataset 
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The time-series data is arranged in a connected and sequential manner. This study will use univariate 

time series forecasting as a supervised learning issue in this research. Therefore, to implement deep 

learning and machine learning algorithms, the data must be reframed using the lag method or sliding 

window. Therefore, the data will be reorganized to present sequential reads as the input x and the next 

read as output y. Then arrange the data again, in order, the value y will be as a part of the input x 

sequentially, and the next value will be as the output y, as shown in the following Figure 1 (Kotriwala 

et al. 2018). 

 

B. Implementation 

Three models based on LSTM: Stacked LSTM, Bi-directional LSTM, and Convolutional LSTM, were 

used due to the accuracy of these models that was achieved in (Shastri et al. 2020) study. Three stations 

Putrajaya, Petaling Jaya, and Tanjung Malim datasets, have been used in the experiment. Each model 

applied on all the five attributes one by one for each station dataset. 

i) Stacked LSTM 

Stack LSTM is multiple LSTM layers that are fully connected structure. As several LSTM layers are 

combined, this leads to greater model complexity and increased model depth. Each intermediate LSTM 

layer generates sequential vectors, which are fed into the next LSTM layer, as shown in Figure 2. 

 
 Figure Error! No text of specified style in document. Stacked LSTM 

Figure 1 Restructured the Datasets 
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ii) Bi-directional LSTM (BiD LSTM) 

Traditional RNNs have a limitation. They only process information in one direction and pay no attention 

to future processed data. The notion of a Bi-directional RNN was proposed by (Bidirectional Recurrent 

Neural Networks). Bi-directional RNN can use different hidden layers as forwarding and backward 

layers, to process information in both directions states simultaneously. Bi-directional LSTM combines 

Bi-directional RNN and LSTM cells. Bi-directional LSTM was presented by (Graves et al. 2005). The 

Bi-directional LSTM structure was shown in Figure 3. 

 

Figure 3  Bi-directional LSTM 

iii) Convolutional LSTM (ConvLSTM) 

One of the most popular deep neural networks is CNN. It gets its name from the linear mathematical 

process between matrixes called convolution. Shi et al. (2015) proposed ConvLSTM as a type of RNN 

that performs CNN convolutions as part of the LSTM for each step. The ConvLSTM uses convolutional 

structures in both the inputs and past states of its local neighbors to predict the future state of a cell in 

the grid see Figure 4 

 

Figure 4 Convolutional LSTM 

Moreover, depending on Shastri et al. (2020), the three models used some of the same 

configuration parameters and differed in other parameters according to the structure for each model. 
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All models used 100 neurons in each layer, ReLu activation function, 40 epochs, 0.2 for validation split, 

Adam used as an optimizer, Mean Square Error as loss function to evaluate the model, and the same 

three sizes of the input data. In contrast, The models differed in the following parameters, as illustrated 

in Table 1.  

Table 1 Parameters of The LSTM Models 

Stack LSTM Bi-directional LSTM Convolutional LSTM 

▪ Two layers of Stack LSTM 

were used. 

▪  Return sequences = true. 
▪  The verbose = 1 

▪  A single hidden layer was 

used. 

▪ The verbose = 2 

▪ A single hidden layer was used.  

▪ 64 filters 

▪ kernel size as (1, 2) 
▪ The verbose = 2 

Additionally, this experiment will implement ten times for each model with each different input 

data among each station data to compare the performance of the models and choose the best one.  The 

best model will determine by comparing the average of (MAPE) values and the accuracy calculated. 

The experiments will be carried out using Spyder python 3.8.5 with open source libraries like 

Tensorflow. Keras version 2.4.0, Pandas, and Numpy. The experimental setup is based on a Laptop 

computer having Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz   2.30 GHz with 8.00 GB under 64-

bit Windows 10 Pro Operating system version 20H2. 

C. Evaluation  

1) Walk Forward Validation Strategy 

The traditional approaches used in machine learning, such as k-fold cross-validation, are ineffective 

with time-series data. Instead of that, a walk-forward validation strategy can help solve this problem. 

The Walk-forward validation is a strategy in which the prediction is performed using expanding window 

methods. The size of the forward window is determined sequentially dependent on the sampling 

frequency of the time series. Training and validation sets are progressively time-shifted to integrate 

recent observations after each time step prediction. Then renew the forecast window (depending on the 

horizon) after each iteration, as shown in Figure 5 (Suradhaniwar et al. 2021)  

 

Figure 5 Walk Forward Validation vs K-fold Validation 
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2) Evaluation Metrics 

Tow metrics have been selected, which are Mean Absolute Percentage Error and Root Mean Squared 

Error to provide a comparison of performance between the models used in this paper. 

i) Mean Absolute Percentage Error (MAPE)  

MAPE is one of the most popular metrics for evaluating forecasting performance. MAPE is expressed 

as a percentage. It also benefits from being scale-independent, making it useful for comparing forecast 

performance across different datasets (Martínez-Álvarez et al. 2015). The following formula gives it. 

 

ii) Root Mean Squared Error (RMSE) 

The RMSE is a metric for comparing estimated and measured values. RMSE is always positive by 

definition, and a lower value indicates greater accuracy. The value of RMSE  benefits from being scale-

dependent; consequently, it is appropriate for comparing different models for the same dataset but not 

for different datasets (Jiang et al. 2020). The following formula gives it. 

 

D. Data Transmission Reduction 

Three important points are used for data transmission reduction. The first one is the best model which 

is produced from the evaluation stage. The second point is the best accuracy from the ten times 

implementations based on MAPE measurement. The last point is the value of a threshold.  The threshold 

means the maximum acceptable error (Forecasting Error) that defines how accurate the data is needed 

(Jarwan et al. 2019). In this paper, 0.5 was chosen as a threshold for Temperature as (Jarwan et al. 

2019), Humidity, and Wind Speed. Whereas 0.005 was chosen as a threshold for the NOx and NO2 

because the range of their values is small between (0 to 0.94). Based on those three points,  the number 

of accurately predicted values will be calculated by using the Transmission Reduction Percentage 

(TRP). The TRP means the percentage of data stated under the threshold, so there is no need to transfer 

it (Jarwan et al. 2019), as shown in this formula :TRP = (Accurate Data / Total Number of Raws) * 100 
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IV. RESULTS & DISCUSSION  

A. EXPERIMENT RESULTS TO CHOOSE THE BEST MODEL 

The experiment has applied using Python programming language. The total number of 

experiments was ten times of implementation for the model on each attribute in each station 

dataset. 

Figure 6 shows the results of the performance of the three models is competitive on all attributes 

except the Wind Speed attributes with the ConvLSTM model. ConvLSTM was dealing better in Wind 

Speed with the smallest MAPE = 12.4, compared with the other models, which have 19.5 MAPE for 

Stack LSTM and 21.7 for BiD LSTM. Figure 7 shows the results of the implementation of all the models 

are competitive performance on Temperature, Humidity, and NO2; however, it is clear the Stack LSTM 

is the best model performance with the smallest MAPE = 25.7 on Wind Speed and 35.4 for Nox. 

 

Figure 6  Putrajaya Results 

 

                   

       Figure 7 Petaling Jaya Result  

TEMP Hum Wind Nox No2

Stack LSTM 1.866 3.138 19.552 27.45 23.139

Bi LSTM 1.846 3.105 21.796 28.82 23.158

ConvLSTM 1.807 3.112 12.464 28.777 24.746
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Figure 8 shows that the performance results for the three models is closed to each other on all 

attributes except the with Wind Speed the ConvLSTM is clearly has the best MAPE =16.0 as shown in 

an ellipse. Furthermore, the ConvLSTM was clearly dealing better on Putrajaya and Tanjung Malim, as 

shown in Figures 6 and 8. So, we can choose the ConvLSTM to calculate the data transmission reduction 

amount. 

     

      Figure 8 Tanjung Malim Result  

 

B. EXPERIMENT RESULTS OF THE DATA TRANSMISSION REDUCTION 

Data transmission reduction means reduce data transfer between two endpoints in the IoT network by 

applying the proposed model in terms of Single or Dual Prediction techniques as explained in the 

previous sections. The first experiment was performed on the Putrajaya. The outcomes are stated in 

Table 2 below. 

Table 2 Putrajaya Data Transmission Reductions Results 
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Table 2 shows the data transmission reduction for the Putrajaya station dataset. The table 

consists of eight columns. The first one is the total number of raws (1756) used in the forecasting to 

calculate the data transmission reduction. The second column shows how much data will be prevented 

from sending from the sensor to the gateway because it is under the threshold so, it is accurate. The 

total number of the data under the threshold for the Temperature, Humidity, Wind Speed, NOx, and 

NO2 are 1220, 348, 1359,  929, and 1228. In contrast, column three represents the data that is over the 

threshold. So, it should send from the sensor to the gateway as the actual reading of the sensor, not the 

predicted data. The total number of the data over the threshold for the Temperature, Humidity, Wind 

Speed, NOx, and NO2 are 536, 1408, 397,  827, and 472. Column four shows the TRP.  TRP is the 

percentage of data that were not carried to transfer because they were accurately predicted. It is clearly 

noticed that the TRP that was achieved for the attributes shows as 69.5% for the Temperature, 19.8% 

for Humidity, 77.4% for Wind Speed, 52.9% for NOx, and 73.1 for NO2. Column five shows the MAPE 

for the best iteration of the ten implementations. The MAPE for the Temperature, Humidity, Wind 

Speed, NOx, and NO2 are 1.75%, 2.99%, 13.05%, 27.77%, and 23.5%. However, the next column is 

the accuracy calculated based on the MAPE as shown in the formula below. It shows the accuracy for 

the Temperature, Humidity, Wind Speed, NOx, and NO2 as 98.24%, 97.00%, 86.94%, 72.22%, and 

76.47%. 

Column seven is RMSE measurement. It shows prediction error for the Temperature, Humidity, 

Wind Speed, NOx, and NO2 as 0.846, 3.683, 0.562, 0.0095, and 0.00527. Finally, the last column 

represents the threshold. In this study, the threshold means the maximum difference between the actual 

and prediction data (Forecasting Error). The threshold value is 0.5 for Temperature, Humidity, and 

Wind Speed; however, 0.005 for NOx and NO2. The threshold value affects the TRP. For example, 

with Humidity data, the MAPE of it is 2.9; thus, the accuracy is about 97%. Whereas the TRP is 19.8%, 

this is because the threshold seems not sensible regarding the nature of the data and the range of the 

sequential of the Humidity data.  So, the threshold value needs the understanding of the user who knows 

the nature of his data to put the sensible threshold for his application. 

Similar to Table 2 for the data transmission on Putrajaya, Table 3 shows Petaling Jaya data 

transmission reduction results, and Table 4 shows Tanjung Malim data transmission reduction results. 

In addition, there is an issue that needs to explain when comparing the three tables 2, 3, and 4. Figures 

9 and 10 are showing it. Figure 9 shows that Putrajaya is the best one depending on the accuracy 98.24% 

for the Temperature, 97.00% for Humidity, 86.94% for Wind Speed, 72.23% NOx, and  76.47% for 

NO2. Then Tanjung Malim accuracy 98.19% for the Temperature, 96.28% for Humidity, 83.97% for 

Wind Speed, 62.99% NOx, and  69.04% for NO2. Finally, Petaling Jaya accuracy 98.20% for the 

Accuracy = 100 – MAPE    
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Temperature, 95.14% for Humidity, 74.87% for Wind Speed, 66.00% NOx, and  69.24% for NO2. In 

comparison, Tanjung Malim is clearly better than Petaling Jaya on Humidity and Wind Speed only. 

Table 3 Petaling Jaya Data Transmission Reduction Results 
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Temp 1756 1182 574 67.31% 1.79% 98.2% 0.79 0.5 

Humidity 1756 192 1564 10.9% 4.855% 95.14% 5.25 0.5 

WindSpeed 1756 684 1072 38.95% 25.12% 74.87% 1.25 0.5 

NOx  1756 384 1372 21.86% 33.9% 66.0% 0.023 0.005 

NO2 1756 1216 540 69.24% 19.47% 80.52% 0.0061 0.005 

 

Table 4 Tanjung Malim Data Transmission Reduction Results 

C
o

lu
m

n
 N

a
m

e 

T
o

ta
l N

u
m

b
er 

o
f R

o
w

s 

D
a

ta
 U

n
d

er th
e 

T
h

resh
o
ld

 

D
a

ta
 O

v
er th

e 

T
h

resh
o
ld

 

T
R

P
 

M
A

P
E

 

A
ccu

ra
cy

 

R
M

S
E

 

T
h

resh
o
ld

 

Temp 1756 1238 518 70.5% 1.8% 98.19% 0.83 0.5 

Humidity 1756 220 1536 12.5% 3.720% 96.279% 4.138 0.5 

WindSpeed 1756 1292 464 73.57% 16.026% 83.97% 0.681 0.5 

NOx  1756 1310 446 74.6% 37.00% 62.99% 0.00616 0.005 

NO2 1756 1637 119 93.22% 30.956% 69.04% 0.00269 0.005 

 

 

Figure 9  Data Transmission Accuracy for The Three Stations 

Figure 10 shows that the TRP of Putrajaya is the best one on Temperature 69.50%, Humidity 

19.80%, and 77.40% for Wind Speed, then the TRP of Tanjung Malim Temperature 70.50%, Humidity 

12.50%, and 73.5% for Wind Speed. Then TRP of Petaling Jaya Temperature 67.31%, Humidity 
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10.90%, and 38.95% for Wind Speed, this seems similar to the accuracy. However, the TRP with NOx 

and NO2 dealing inconsistent with the accuracy; Tanjung Malim has the best TRP 74.60% for NOx and 

93.22% for NO2 instead of Putrajaya and Petaling Jaya. Putrajaya has 52.90% for NOx and 73.10% for 

NO2, and Petaling Jaya has 21.86% for NOx and 69.24% for NO2. The reason behind that is the range 

of data and the value of the threshold.  When the last range value is small, like NO2 = (0.31) in Tanjung 

Malim, this caused the most predicted value to be under the threshold, so the TRP is big (93.22%), as 

shown in Figure 11. Whereas, last range value for Putrajaya NO2 is 0.062, and its TRP is 73.10%. Also, 

in the same way, the last range value for Petaling Jaya NO2 is the biggest rang, 0.094, and its TRP is 

69.24%. Similarly, with NOx. For this reason, it is important to understand the nature of data to put the 

sensible threshold. 

 

Figure 10 Data Transmission TRP for The Three Stations 

 

Figure 11  Compare The TRP With Last Value In The Range Of Attribute 

To sum up, Putrajaya data produced the best accuracy of the data transmission reduction. The 

TRP value and prediction accuracy are affected by the threshold value and the range of data. 

V. CONCLUSION 

Overload communication in the IoT network caused problems of delay in Smart city-based IoT 

applications. The continuously capturing data from sensors into the IoT network are generating massive 

data. The data collected often has some spatial or temporal redundancy and is unnecessary, which can 

be eliminated. One popular approach for this issue is data transmission reduction. Some researchers 

used Machine and Deep Learning techniques to reduce data transmission in the WSNs by applied a 
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Dual Prediction (DP) method using sensors data. Therefore, this study aims to reduce data transmission 

for an atmospheric IoT application using deep learning. The experiments were conducted on three 

stations Malaysia Atmospheric datasets: Putrajaya, Petaling Jaya, and Tanjung Malim, in which each 

station consists of five attributes: Temperature, Humidity, Wind Speed, NO2, and NOx.  Three LSTM 

algorithms are used to investigate the best prediction model for each attribute: Stack LSTM, BiD LSTM, 

and ConvLSTM. The result shows ConvLSTM algorithm has consistently shown the best model on 

Putrajaya and Tanjung Malim datasets. Later, the ConvLSTM prediction model has been used to 

forecast data for all three stations. The experiment results showed that Putrajaya has the best accuracy 

result; it can be concluded that deep learning has contributed to reducing IoT data transmission from up 

to 77.40%. In the future, it is recommended to re-apply this study using other models, use several years 

of data from the Malaysia Atmospheric dataset. Re-test the data transmission reduction with different 

thresholds. Re-implement the models were used in this study on a new dataset or to solve another time 

series forecasting problem. Finally, re-apply this study on hardware. 
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