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ABSTRACT 

Fused filament fabrication (FFF) is becoming an increasingly popular additive manufacturing process 

that has found its place in industrial and home settings alike. However, FFF involves multiple process 

parameters that influence the final quality of the part being fabricated. Defects such as missed layers, 

shifted layers as well as overfill and underfill can occur if these parameters are not optimized. Thus, it 

is important to detect such defects as early as possible to prevent potential wastage. Current defect 

detection algorithm falls into two broad categories, sensor-based and vision-based defect detection. 

These methods are either complex, cost-prohibitive or a combination of both with the solution often 

costing many times more than the actual machine. Therefore the aim of this research is to propose a 

cost-effective and computationally efficient algorithm in defect detection of fused filament fabricated 

parts. This research follows an experimental approach. A vision-based defect detection framework is 

presented employing an integrated approach in the detection of error conditions. The first part utilizes 

a structural approach to detect missed layers and shifted layers defects. The second approach employs 

machine learning specifically a convolutional neural network to detect normal, underfill and overfill 

conditions. These two approaches are evaluated using a synthetic dataset generated by manipulating 

the process parameters of the FFF machine with promising results. Additionally, computational 

efficiency and cost-effectiveness of the algorithm are validated and serves to provide a practical 

dimension to this research. 

 

Keywords: Fused Filament Fabrication, FFF, Fused Deposition Modelling, FDM, vision-based defect 

detection, Convolutional Neural Networks, CNN 

 

I. INTRODUCTION 

Fused filament fabrication (FFF) or more commonly known via its trademarked name, Fused 

Deposition Modelling (FDM) is a form of additive manufacturing. Additive manufacturing is 

defined as a process of building 3-dimensional (3D) objects from a digital description of the 

model, layer by layer (Beyer 2014). Specifically in FFF, a 3D object is built by selective 

deposition of molten material one layer at a time (Beyer 2014; Gibson et al. 2010). Usually, 

commodity thermoplastic materials are used such as Polylactic Acid (PLA) and Acrylonitrile 

butadiene styrene (ABS). However, more exotic materials that have a higher performance in 

factors such as tensile strength are also available suggesting that FFF usage has moved beyond 

rapid prototyping and into the production of a viable final product. 

FFF is arguably the most widely adopted form of additive manufacturing by both 

hobbyists and businesses alike due to its low cost of entry and ease of maintenance. However, 

FFF manufacturing technology involves multiple parameters each affecting the final part 

quality. Common defects as investigated by Peng & Xiao are warping, missing finer details, 
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and poor surface quality and dimensional errors (Peng & Xiao 2012). The occurrence of such 

defects is often catastrophic resulting in a product that is not usable either due to poor internal 

strength or poor surface quality when cosmetic appearance is important. Compounding the 

problem is the long production or printing time of each part which is an inherent trait of FFF. 

Thus, early intervention is required if a defect is found to reduce wastage and increase cost and 

time efficiency.  

The importance of early intervention including sensing, control, and process 

innovations in additive manufacturing is also echoed by Huang et al. (2015) in examining the 

current gaps in the field. Thus, it is important to detect such defects automatically and inform 

the machine operator for corrective actions. This ties in with the main objective of this project; 

which is to develop a FFF defect detection framework. In particular, computer vision-based 

techniques will be applied in the diagnosis of the defects. Additionally, an attempt is made at 

making the defect detection algorithm cost-effective and capable to run on a low powered 

embedded system, the Raspberry Pi 4. 

II. RELATED WORK  

 

A. Types of FFF Defects 

 

Peng & Xiao (2012) are one of the first to investigate and categorize defects in FFF. In general, 

3 main defect categories are proposed which are shape errors, dimensional errors, and surface 

quality errors (Peng & Xiao 2012). Defects can also manifest in terms of internal stresses within 

the fabricated part. Separately, Peng (2012) and Agarwala et al. (1996) describe them as 

stresses or structural defects. A more recent defect classification can also be found via online 

resources due to the rapid rise in popularity of FFF machines such as the “Print Quality Guide” 

provided by Simplify3D (“Print Quality Guide” n.d.). This resource provides a more accessible 

but targeted description of the common defects affecting FFF machines. However, the defects 

can still be classified within the general categories proposed by Peng & Xiao as well as 

Agarwala et al. This research focuses on 4 of these defects which are missed layer, shifted 

layer, overfill and underfill. Missed layer, shifted layer and underfill are classified as structural 

defects whereas overfill is classified as shape errors. 

 

B. FFF Defect Detection Algorithms 

Rao et al. (2015) are among the first in introducing a real-time monitoring system to detect 

errors in the additive manufacturing process through the use of sensors. The system proposed 

employs many sensors which act to detect anomalies or drifts within the manufacturing process 

(Rao et al. 2015). Since then, there have been several additional sensor-based techniques 

employed by researchers (Domingo-Espin et al. 2014; Wu et al. 2015). For example, Wu et al. 

(2015) use acoustic emissions to measure extruder health. This is done by measuring the 

acoustic signatures of the extruder for each condition; blocked, semi-blocked, normal, run-out. 

A support vector machine (SVM) classifier is then trained based on this data (Wu et al. 2015). 

An alternative to sensor-based approaches are vision based which is within the scope of 

this research. In general, vision based approaches can be split into 3 categories. The first 

approach involves the use of a reconstructed 3D model and is compared against the printed 

object. Holzmond & Li (2017) employs this approach via the use of a stereoscopic camera to 

generated a 3D model of the current layer being printed. A global comparison is then made 

with the reconstructed model. Similarly, Nuchitprasitchai et al (2017) applies this approach 

using a side perspective instead. This allows a comparison on the entire fabricated part to be 
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done detecting accumulative errors. However, both works follow a global comparison approach 

where defect classification is not attempted. 

The second category involves the use of image processing techniques. Baumann & Roller 

utilizes this approach using a combination of thresholding and blob detection (2016). The 

thresholding operation is done in the HSV colour space manually. Blob detection is then carried 

out on the thresholded image to detect defects such as missed layer, shifted layer and layer 

detachment. Lyngby et al. (2017) also employs an improved algorithm using image processing 

techniques. Instead of relying purely on blob detection, a geometric representation of the part 

is retrieved from its 3D model which the image is compared against.  

The final category involves the use of supervised learning. Liu et al. (2019) proposed a 

closed-loop quality control approach that retains defect type classification. This approach is 

carried out using two microscopes that inspect the surface of the current part layer that is being 

deposited. To classify defects, a large number of images are generated (both normal and defect 

conditions) by varying the machine parameters. However, due to the setup where the 

microscopes are situated very close to the extruder that deposits the material, the detection can 

only happen on the XY surface plane. A supervised learning model is also employed by 

Paraskevoudis et al. (2020) via the use of the convolutional neural network (CNN) model, 

Single Shot Detector (SSD) to detect and locate stringing defects. However, results are not 

promising with a precision of 0.44, recall of 0.69 at Intersection over Union (IoU) of 0.4 

(Paraskevoudis et al. 2020) largely due to the use a small dataset.  

Although the results from Paraskevoudis et al. are not encouraging, the benefits of CNNs 

as an end-to-end classification approach should not be discounted. Results by Zhang et al. in 

the domain of additive metal sintering shows promise where they obtain a defect classification 

acccuracy of 82% using a patch-based network (2019). Furthermore, the success of deep 

classification neural networks (DCNN) in single-label image classification problems, 

surpassing human-level performance in the MNIST and ImageNet datasets  also enforces this 

idea (Rawat & Wang 2017). 

In summary, the review on related work shows that defect detection approaches utilizes 

algorithms that focuses on a specific category of defect. For example, Baumann & Roller 

employs an algorithm based on image processing techniques in detecting structural layer 

defects such as layer shift and layer misses whereas Lui et al. employs a supervised learning 

approach in classifying infill defects. Secondly, each approach employed by past researchers 

have their own strengths and weaknesses. Therefore, this research will focus on proposing an 

integrated approach building upon the algorithms employed by past researchers. 

III. RESEARCH QUESTIONS 

The main objective of this research is to propose an effective defect detection framework 

capable of detecting 4 types of common defects which are missed layer, shifted layer, overfill 

and underfill. The proposed algorithm must be cost effective and efficient allowing it to run 

on a low powered embedded system, the Raspberry Pi 4.  Against this backdrop, the research 

will focus on answering the following research questions; 

1. Is a single camera solution capable of detecting defects in FFF parts accurately and 

reliably? 

2. What are the factors that affect the classification accuracy of FFF parts defects? 

 

IV. METHODOLOGY 
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A. Overview of Proposed Framework 

The proposed framework is shown in Figure 1 and mainly consists of 2 major components; a 

region of interest (ROI) extraction followed by the defect detection component. The defect 

detection component employs an integrated approach combining multiple algorithms that each 

target specific types of defects. The flow of the framework is summarized below: 

1. An image is taken after each layer is fabricated. 

2. ROI extraction is then carried out to extract the current layer from the image background. 

3. Defect detection is then done sequentially with missed layer detection done first. 

4. If no missed layers are detected, shifted layer detection is then carried out. 

5. If neither missed layer or shifted layers are detected, overfill and underfill detection is 

finally carried out. 

 

 

Figure 1 Proposed Framework 

 

B. Region of Interest Extraction 

The region of interest extraction process is summarized in Figure 2. The region of extraction 

process hinges on two main concepts. Firstly, it leverages on extracting the 3D description of 

the model being printed by pre-processing the GCODE file. This results in a point cloud 

containing the outer contours or walls of each layer. Secondly, an accurate pose of the printed 

object is estimated via the process of camera calibration and pose estimation. The camera 

calibration utilizes the checkerboard multiplane calibration process which is based on work 

done by Bouguet and Zhang (Bouguet n.d.; Z. Zhang 2000). The pose estimation step is then 

done via the use of a specialized holder printed onto the machine bed before a single ArUco 

marker is placed upon it. In particular, this is achieved by finding the 2D-3D correspondence 

of the marker. This operation is more commonly known as Perspective-n-point which is based 

on the pinhole camera model. This enables an accurate 3D-2D mapping allowing the point 

cloud to be projected accurate onto the image as shown in Figure 3. Finally a perspective 

correction is done on the extracted ROI. This step is only applicable for the underfill and 

overfill detection and is done to allow the model to generalize better. 

 

Figure 2 Region of Interest Extraction 
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Figure 3 ArUco marker and projection of XYZ cube 

C. Missed Layer Detection 

 

The missed layer detection algorithm consists of a thresholding operation followed by 

structural analysis using the concept of image moments. In order to ensure that thresholding 

works reliably across different polymer colours and without manual intervention, a 

combination of histogram backprojection followed by Otsu’s thresholding is employed. 

Histogram backprojection is based on work done by Swain & Ballard (1992). In particular, this 

algorithm is employed to calculate the probability of a pixel intensity belonging to the ROI. 

The output of this operation is an image matrix containing the normalized probability 

distribution allowing a more accurate thresholding process via Otsu’s method. 

Contours are then found from this thresholded image with the largest used for centroid 

calculation. The centroid calculation is based on moments with the two dimensional discrete 

form applicable for images as shown below: 

𝑚𝑝,𝑞 =  ∑ ∑ 𝑥𝑝𝑦𝑞𝑓(𝑥, 𝑦)

ℎ

𝑦=0

𝑤

𝑥=0

 

Where the centroid coordinate is simply the first-order moments, 𝑚1,0 and 𝑚0,1 divided by the 

zero-order moment, 𝑚0,0 which also happens to denote the area of the contour: 

𝑥 =  
𝑚1,0

𝑚0,0
 , 𝑦 =  

𝑚0,1

𝑚0,0
 

A comparison of centroids between the contour extracted from the point cloud representation and the 

contour extracted from the thresholded image is then compared. If there are no defects, the 2 centroids 

will overlap with a small margin of error. 

 

D. Shifted Layer Detection 

The shifted layer detection follows the same algorithm as that of missed layer detection with a 

few key differences. Firstly, the contour search space is dilated by a factor of 1.1x using the 

following formula: 
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𝑥𝑑 =  ⌈(𝑥𝑖 −  𝑥𝑐)𝑐𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 +  𝑥𝑑  ⌉ , 
𝑦𝑑 =  ⌈(𝑦𝑖 −  𝑦𝑐)𝑐𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 +  𝑦𝑑  ⌉ 

 

 

 

Where(𝑥𝑑 , 𝑦𝑑 ) are the new dilated points,(𝑥𝑖 , 𝑦𝑖) the original points, 𝑐𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛  the dilation 

factor and (𝑥𝑐, 𝑦𝑐) the centroid coordinates. The error threshold is also adjusted to account for 

the increased sensitivity to the size of the fabricated part due to the dilation operation where 

the constants m and c are found via linear approximation: 

𝑒𝑟𝑟𝑜𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑚 (
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 𝑎𝑟𝑒𝑎

𝑖𝑚𝑎𝑔𝑒 𝑠𝑖𝑧𝑒
) + 𝑐 

 

E. Overfill and Underfill Detection 

Three efficient CNN models were picked and evaluated based on the paper by Bianco et al. 

(2018). In particular, models that are memory efficient and have good inference timing on a 

low powered system while maintaining top-1 accuracy of more than 60% on the ImageNet 

dataset. The chosen models are Xception, MobileNet-v2 and ShuffleNet-v2. The training phase 

is done offline on Google Colab using the Keras API and Tensorflow framework. 

 

3. RESULTS AND DISCUSSION 

 

A. Experimental Setup 

Two different sets of experiments are carried out to evaluate the effectiveness of the proposed 

algorithms. The first set targets the missed layer and shifted layer detection whereas the second 

set targets overfill and underfill detection. In particular, the algorithms are evaluated for 

accuracy and timing. Each of these experiments are evaluated using synthetic datasets 

generated by either manipulating the GCODE file or the process parameters within the slicing 

software, Cura. In particular, the dataset generated for shifted layer detection involves the 

addition of G92 commands to introduce shifts in the x and y directions as shown in Figure 4. 

The dataset generated for overfill and underfill detection is done by changing the extruder flow 

rate on Cura using the rates shown in Table 1. For the shifted layer detection, 3 models (Elliptic 

Polygon, Octagonal, Irregular Polygon) printed in 3 colours (Orange, Blue, Black) were each 

varied to contain shifts in the x, y and 45° xy directions at varying heights. For overfill and 

underfill detection, a total of 3271 images were collected with 1271 images categorized as 

normal, 906 as overfill and 1049 as underfill. Timing experiments were done both on the 

Raspberry Pi 4 and a desktop computer with a Core i7-4770 processor and 16GB of memory. 

 

Figure 4 Example G92 offset of 5mm in the positive x direction at layer 20 
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Table 1 Extruder flow rate 

Defect Class Flow rate (%) 

Normal 100 

Overfill 200 

Underfill 40 

 

B. Results 

Table 2 and Table 3 indicate the accuracy and timing results respectively for the missed layer 

detection algorithm. The average F1-Score recorded is 0.872. However, recall values varies 

between 0.7 and 1.0 with the Octagonal model showing the worst results. Low recall values 

indicate that more images are categorized as false negatives compared to true positives. In 

terms of timing, the average time to process a single image is around 0.3 seconds which is 

acceptable on the target system, the Raspberry Pi 4. Comparatively, the desktop computer is 

on average 4 times faster signifying the need for an efficient algorithm. 

Table 2 Missed Layer Detection Accuracy Results 

Model Colour Defect location Precision Recall F1-Score 

Elliptic 

Polygon 

Orange Layer 11 0.971 0.846 0.904 

Blue Layer 21 0.957 0.759 0.846 

Black Layer 31 0.783 0.947 0.857 

Octagonal 

Orange Layer 31 0.967 0.744 0.842 

Blue Layer 31 0.971 0.708 0.819 

Black Layer 31 0.903 0.933 0.918 

Irregular 

polygon 

Orange Layer 21 0.913 0.724 0.808 

Blue Layer 10 0.971 0.872 0.919 

Black Layer 10 0.927 0.974 0.95 

 

Table 3 Missed Layer Detection Timing Results 

Model Colour 
Defect 

Location 

Average Timing 

Raspberry Pi 4 (s) 

Average Timing 

Desktop Computer (s) 

Elliptic Polygon 

Orange Layer 10 0.34 0.08 

Blue Layer 21 0.36 0.11 

Black Layer 31 0.35 0.09 

Octagonal 

Orange Layer 31 0.34 0.08 

Blue Layer 31 0.34 0.08 

Black Layer 31 0.33 0.08 

Irregular polygon 

Orange Layer 21 0.31 0.07 

Blue Layer 11 0.31 0.07 

Black Layer 11 0.31 0.07 

 

Table 4 and Table 5 indicate the accuracy and timing results respectively for the shifted 

layer detection algorithm. The average F1-Score recorded is 0.75 which is lower than missed 

layer detection. In particular, layer shifts involving the y-axis which is the axis parallel to the 

perspective view of the camera show the worst results regardless of model shape and colour. 

Timing efficiency is similar to that of missed layer detection, at 10% worst, on average. 
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Table 4  Shifted Layer Detection Accuracy Results 

Model Colour Defect location Precision Recall F1-Score 

Elliptic 

Polygon 

Orange 5mm x-axis shift at layer 31 0.895 0.895 0.895 

 5mm y-axis shift at layer 11 0.919 0.872 0.895 

 -5mm 45° xy shift at layer 31 0.917 0.579 0.710 

Blue 5mm x-axis shift at layer 21 0.931 0.931 0.931 

 5mm y-axis shift at layer 21 0.927 0.974 0.95 

 5mm 45° xy shift at layer 11 1.0 0.795 0.886 

Black 5mm x-axis shift at layer 21 1.0 0.862 0.926 

 5mm y-axis shift at layer 21 All cases predicted negative. 

 -5mm 45° xy shift at layer 21 All cases predicted negative. 

Octagonal 

Orange 5mm x-axis shift at layer 21 0.931 0.9 0.915 

 5mm y-axis shift at layer 21 All cases predicted negative. 

 -5mm 45° xy shift at layer 31 0.824 0.424 0.56 

Blue 5mm x-axis shift at layer 11 1.0 0.818 0.9 

 5mm y-axis shift at layer 11 0.906 0.935 0.920 

 5mm 45° xy shift at layer 11 0.914 0.97 0.941 

Black 5mm x-axis shift at layer 31 1.0 0.844 0.915 

 5mm y-axis shift at layer 31 0.688 0.939 0.969 

 5mm 45° xy shift at layer 31 0.667 0.970 0.790 

Irregular 

polygon 

Orange 5mm x-axis shift at layer 11 0.919 0.872 0.895 

 5mm y-axis shift at layer 11 0.2 0.03 0.05 

 5mm 45° xy shift at layer 11 0.872 0.872 0.872 

Blue 5mm x-axis shift at layer 21 0.96 0.828 0.889 

 5mm y-axis shift at layer 21 0.96 0.828 0.889 

 5mm 45° xy shift at layer 21 1.0 0.828 0.906 

Black 5mm x-axis shift at layer 11 1.0 0.949 0.974 

 5mm y-axis shift at layer 11 1.0 0.744 0.853 

 5mm 45° xy shift at layer 11 1.0 0.846 0.917 

 

Table 5 Shifted Layer Detection Timing Results 

Model Colour Defect Location 
Average Timing 

Raspberry Pi 4 (s) 

Average Timing 

Desktop Computer 

(s) 

Elliptic 

Polygon 

Orange 5mm x-axis shift at layer 31 0.38 0.09 

Blue 5mm y-axis shift at layer 21 0.35 0.09 

Black -5mm 45° xy shift at layer 21 0.34 0.08 

Octagonal 

Orange 5mm x-axis shift at layer  21 0.36 0.08 

Blue 5mm y-axis shift at layer 11 0.37 0.08 

Black 5mm 45° xy shift at layer 31 0.37 0.08 

Irregular 

polygon 

Orange 5mm x-axis shift at layer 11 0.35 0.08 

Blue 5mm y-axis shift at layer 21 0.33 0.08 

Black 5mm 45° xy shift at layer 11 0.34 0.08 

 

 Table 6, Table 7 and Table 8 indicate the total learning hours and accuracy across 

validation and test sets for different CNN model configurations. In particular, the Xception 

model with fine tuning over the entire model gave the highest validation and test set accuracy 

at 0.9767 and 0.894 respectively. However, training times are also the longest at 6.45 hours. 

Similarly, the MobileNet-v2 model with fine tuning over the entire model yields the best results 
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with validation and test set accuracy at 0.9627 and 0.8641 respectively. However, training 

times are much lower at only 1.17 hours. On the other hand, ShuffleNet-v2 shows respectable 

results with the validation and test set accuracy at 0.941 and 0.8478 respectively considering 

only random weights were used due to it not being available as a pre-trained model on the 

Keras API. Training times falls in the middle at 3.19 hours for ShuffleNet-v2. 

Table 6 Xception Model Results 

Xception Configuration 
Total training 

time (hours) 

Validation Set 

Accuracy 

Test Set 

Accuracy 

Xception + Random weights 4.46 0.8929 0.8125 

Xception + ImageNet weights 4.2 0.9037 0.8424 

Xception + Fine tuning entire model 6.45 0.9767 0.8940 

Xception + Fine tuning from layer 100 3.7 0.9177 0.8832 

Xception + Fine tuning from layer 50 4.36 0.9177 0.8832 

 

Table 7 MobileNet-v2 Results 

MobileNet-v2 Configuration 
Total training 

time (hours) 

Validation Set 

Accuracy 

Test Set 

Accuracy 

MobileNet-v2 + Random weights 1.06 0.9379 0.8288 

MobileNet-v2 + ImageNet weights 1.46 0.9425 0.8207 

MobileNet-v2 + Fine tuning entire model 1.17 0.9627 0.8641 

MobileNet-v2+ Fine tuning from layer 100 0.69 0.9674 0.8560 

MobileNet-v2 + Fine tuning from layer 50 0.71 0.9689 0.8478 

 

Table 8 ShuffleNet-v2 Results 

Shufflenet-v2 Configuration 
Total training 

time (hours) 

Validation Set 

Accuracy (%) 

Test Set 

Accuracy (%) 

ShuffleNet-v2+ Random weights 3.19 0.9410 0.8478 

 

 Table 9 shows the average inference timing of a single image for each CNN model in 

scope. The fastest inference is achieved with the MobileNet-v2 architecture at 0.112 seconds 

whereas the slowest is Xception at 1.308 seconds on the Raspberry Pi 4 platform. The 

MobileNet-v2 model was chosen as the underfill and overfill model due to its fast inference 

timing. Also, the accuracy of this model is similar to that achieved using the Xception model. 

Table 9 Average Inference Timing 

CNN Model Average Timing Raspberry Pi 4 (s) Average Timing Desktop Computer (s) 

Xception 1.308 0.244 

MobileNet-V2 0.112 0.053 

ShuffleNet-V2 0.193 0.037 

 

C. Factors Affecting Defection Detection Framework Accuracy 

The experimental results show 3 key factors that affect the accuracy of the defect detection 

framework. The first factor pertains to algorithmic limitations specifically the missed layer and 

shifted layer detection. Both of these algorithms utilizes thresholding techniques via a 

combination of histogram backprojection and Otsu’s method and requires the thresholding 

operation to be as accurate as possible. However, differing lighting conditions affect this 

operation. A defective thresholding operation will consequently affect the centroid calculation 
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as shown in Figure 5. The expected contour and centroid is shown in green whereas the 

defective thresholding and the resulting centroid is shown in pink and red respectively. 

Secondly, the performance of the shifted layer detection is also influenced by the position of 

the camera. In particular shifts along the perspective view of the camera are not detected 

accurately due to the influence of previous layers within the search space. This is evident in 

Figure 6 where the expected contour is again shown in green and the contour found with a 

dilated search space from the image is shown in pink. 

 

Figure 5 False Positive - Defective Thresholding Operation 

 

Figure 6 False Negative - Influence of previous layers 
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 Secondly, there is also the issue of size and variation of the training set. The data 

collection process is inherently time consuming due to the nature of the FFF process. Thus, 

only about 1000 images per class of normal, overfill and underfill were generated. The 

accuracy of the evaluated models can be improved up to a certain point if more data can be 

generated as investigated by Foody & Arora in their work on factors affecting artificial neural 

network accuracy (1997). Also, the data generated only covers a specific infill design, “cubic” 

and will likely fail for new unseen infill designs. 

 Lastly, transfer learning has been found to be a factor in the accuracy of the model used 

for overfill and underfill detection. There is a marked improvement in the accuracy for both 

Xception and MobileNet-v2 when ImageNet weights were used together with a round of fine 

tuning on the entire model. This results are also in line with that from Yosinski et al. in their 

work on examining generability vs specificity of transferring features (2014). They denote that 

initializing a network with transfer features improve generalization performance even with 

fine-tuning. 

D. Cost Analysis on Proposed Defect Detection Framework 

An objective of this research is to propose a defect detection framework that is also cost-

effective and appropriate in relation to the cost of the FFF machine. Popular printers across 

different price ranges are shown in Table 10.The total cost of the framework is evaluated 

against FFF machines within the price bracket of under $300 as it is the most popular among 

hobbyists and first time adopters of FFF. Specifically, the total cost should not exceed 50% of 

this price bracket which equates to $150 (RM615). This target was achieved successfully with 

the use of a single camera coupled with the Raspberry Pi 4 as the printer control platform. A 

breakdown of the costs involved is shown in Table 11. 

Table 10 Cost of Popular FFF Machines 

FFF Machine Price Bracket ($USD) Market Price ($USD) 

Dremel DigiLab 3D45 < 2000 1,899 

Original Prusa i3 MK3S < 1000 906 

Artillery Sidewinder X1 V4 < 500 479 

Creality Ender 3 V2 < 300 262 

 

Table 11 Defect Detection Cost Breakdown 

Item Cost ($USD) 

Raspberry Pi 4 4GB 65 

Raspberry Pi Camera Module V2 25 

Raspberry Pi 4 4GB Power Supply 7.95 

Total 97.95 

 

 

4. CONCLUSION 

In this research, a defect detection framework for FFF fabricated parts based on a single camera 

is proposed capable of detecting 4 different types of defects; missed layers, shifted layers, 

overfill and underfill. Factors affecting the accuracy of the proposed defect detection 

framework are also analysed where issues such as differing lighting conditions and the position 

of the camera affect the defect detection approaches based on image processing techniques. On 
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the other hand, issues such as the size and variation of the training set and the use of transfer 

learning affects the approach based on supervised learning.  
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