
PS-FTSM-2020-013 

 

Biomedical Named Entity Recognition Using Word Embedding 

Model of FastText Technique 

Akrm Ben Niran, Sabrina Tiun 

Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia 

43600 Bangi, Selangor Darul Ehsan, Malaysia 

 

Email: akit.992@gmail.com, sabrinatiun@ukm.edu.my 

 
 

ABSTRACT 

Biomedical Named Entity Recognition (BNER) has been presented as a task to identify all the 

textual medical entities automatically. In the past, machine learning techniques were trained 

to detect these entities using traditional features such as dictionaries, gazetteers, word’s length 

and syntactic tag. Recently, most of the literature has turned into using the word embedding 

technique where every word will be associated with a numeric embedding that distinguishes 

its contextual meaning. Mainly, the majority of the recent BNER studies have been relying on 

either Word2Vec or Glove models. Yet, these models suffer from a remarkable limitation 

which is the out-of-vocabulary. Such problem occurs because these models are mainly 

working with words as units without considering their character representation. This would 

make the embedding model to consider only the words that have been encountered in the 

training and any unseen word would not have an embedding later. This study aims to propose 

an efficient word embedding using the FastText model for the BNER task. Such a model has 

the ability to consider the character N-gram of each word in order to produce its embedding. 

This would contribute toward minimizing the out-of-vocabulary words. In particular, this 

study utilizes two benchmark biomedical datasets; the first for disease names, and the second 

for gene expressions. In addition, a Logistic Regression (LR) classifier has been utilized to 

accommodate the classification after getting the embedding of FastText. Results of applying 

the proposed embedding showed an outperformance compared to the baseline where an f-

measure of 96.61% has been acquired from the first dataset, and an f-measure of 97.46% has 

been acquired from the second dataset. These results can demonstrate the effectiveness of 

using FastText as a word embedding technique. 

 

Key words: Biomedical Named Entity Recognition, Word Embedding, Word2Vec, 

FastText, Logistic Regression  

INTRODUCTION 

The expansion of medical information has brought many demands and needs in terms of analyzing 

the textual entities. This can be represented by detecting genes, viruses, drugs, diseases and other 

medical instances. In this sense, Biomedical Named Entity Recognition (BNER) has been presented as 

a task to identify all the textual medical entities in an automatic manner (Chen et al., 2019). In the past, 

machine learning techniques were trained to detect these entities using traditional features such as 

dictionaries, gazetteers, word’s length and syntactic tag (Alshaikhdeeb and Ahmad, 2016). Recently, 

most of the literature has turned into using the word embedding technique where every word will be 

associated with a numeric embedding that distinguishes its contextual meaning.  

Word embedding technique is a revolutionary method where the text feature space is continuously 

representing the contexts of words. In this regard, every word is represented in the multiple dimension 

space where several features can be detected such as its syntactic tag and its contextual meaning 

(Goldberg and Levy, 2014). Word embedding has been proposed for wide range of textual applications 

including BNER. Yet, there are still numerous issues that are facing this technique. 

State of the art in BNER task studies was based on word embedding in which the biomedical text 

corpus is being processed using an embedding architecture such as LSTM or CNN to generate the 

embedding  (Li and Jiang, 2017). However, all these studies that have utilized the word embedding 

Cop
yri

gh
t@

FTSM



PS-FTSM-2020-013 

 

were using either word2vec (Zhu et al., 2017) or Glove (Cho and Lee, 2019) paradigms. These 

paradigms are mainly working with words as units without considering their character representation. 

This would make the embedding model to consider only the words that have been encountered in the 

training. Thus, if an unseen word has been encountered, it would not have embedded in the model 

(Pylieva et al., 2018).  

For example, assume the word ‘Cancer’ is located in a corpus and the embedding model has been 

trained to generate embedding for such word. After the training and saving the model, if the word 

‘Cancers’ has been encountered, it would have no vector in the model because the model would 

consider ‘Cancer’ and ‘Cancers’ as two different words. This is known as the out-of-vocabulary 

problem.  

The out-of-vocabulary problem is considered to be the main hindering factor toward achieving the 

high accuracy of biomedical entity detection. Therefore, it is crucial to overcome this problem to 

improve accuracy. This study aims to propose an efficient word embedding using FastText model for 

the BNER task. Such model has the ability to consider the character N-gram of each word in order to 

produce its embedding. This would contribute toward minimizing the out-of-vocabulary words. In 

particular, this study utilizes two benchmark biomedical datasets; the first for disease names, and the 

second for gene expressions. In addition, an LR classifier has been utilized to accommodate the 

classification after getting the embedding of FastText. Results of applying the proposed embedding 

showed an outperformance compared to the baseline where an F-measure of 96.61% has been acquired 

from the first dataset, and an F-measure of 97.46% has been acquired from the second dataset. These 

results demonstrate the effectiveness of using FastText as a word embedding technique for BNER.  

RELATED WORK 

In the literature, there are plenty of studies that have addressed BNER task. For instance, Bhasuran 

et al. (2016) presented a BNER method using a CRF classifier. The proposed method utilizes some 

features such as affixes, dictionary-based and syntactic features. Two benchmark datasets were used 

including NCBI which contains disease names and BioCreative-II which contains genes. Results of f-

measure were 89.12% for NCBI and 76.74% for BioCreative-II.  

Gridach (2017) presented a word embedding method for BNER task using a technique known as 

Long-Short Term Memory (LSTM). This technique was intended to generate word embedding for 

terms from BioCreative-II dataset. After that, based on the embedding, LSTM will also classify the 

biomedical terms. Results of f-measure was 89.46%.  

In the same regard, Li and Jiang (2017) presented a BNER method based on LSTM for word 

embedding and biomedical entities detection. Using BioCreative-II dataset, result of f-measure was 

89.49%.  

Zhu et al. (2017) presented a word embedding technique based on Convolutional Neural Network 

to detection biomedical entities. Using BioCreative-II dataset and NCBI dataset, the proposed method 

obtained 87.2% of f-measure for the first dataset, and 87.26% of f-measure for the second dataset.  

Cho and Lee (2019) presented a combination method of CRF and LSTM for BNER task. In fact, 

LSTM has been used to generate word embedding and CRF has been used to detect hidden features of 

the word such as its mapping from dictionary. Using BioCreative-II and NCBI datasets, the proposed 

combination method showed an f-measure of 81.44% for the first dataset, and 85.68% for the second 

dataset.  

MATERIALS AND METHODS 

The research framework has been designed to articulate the research objectives where the proposed 

efficient word embedding of FastText is being applied. There are five stages that have to be 

accomplished in order to fulfill the objectives. The first stage contains the datasets that are intended to 

be used within the experiments. For this purpose, two different biomedical datasets are being used. The 

second stage contains the preprocessing tasks that are intended to convert the datasets into an 

appropriate form for processing. The third stage contains the word embedding where the preprocessed 

datasets would undergo an analytical task to get embedding for each distinctive word. For this purpose, 

two word embedding architectures are used including the standard Word2Vec which considered to be 

the baseline, and the FastText which considered to be the proposed embedding that will be compared 

against the standard embedding. The fourth stage contains the classification where the biomedical 

entities (BNEs) are being categorized into its actual class label. For this purpose, a Logistic Regression 

(LR) classifier is used. Finally, the fifth stage contains the evaluation where the results of classification 

are being assessed. Figure 1 depicts the aforementioned stages.  

 

Cop
yri

gh
t@

FTSM



PS-FTSM-2020-013 

 

 
Figure 1.  Phases of research framework 

 

Dataset 

In this section, the datasets that are intended to be examined within the experiments will be 

discussed. In this regard, two biomedical datasets have been considered. The reason behind selecting 

two different biomedical datasets is to provide a demonstrate the ability of word embedding in terms of 

representing various types of BNEs (e.g. disease names, gene names, etc.). In fact, both datasets will be 

used to train both Word2Vec and FastText models. Following subsections will discuss each dataset 

individually.  

 

Table 1  NCBI statistics (Doğan, et al., 2014) 

Class Explanation  Quantity 

UN Disease name 8475 (6892 diseases, and 790 unique) 

O Non-disease name 120,569 

 

The second dataset has been introduced by Smith et al. (2008). It focuses on genes and gene-related 

mentions where approximately 20 thousand of genes along with 13 thousand of gene-related are being 

included. The dataset is accessed at http://biocreative.sourceforge.net/biocreative_2_dataset.html. 

Table 2 depicts the statistics of such dataset.  

 

Table 2  BioCreative-II statistics (Smith, et al., 2008) 

Class Explanation  Quantity 

UN Genes  15,700 

O Non-gene  371,000 

 

Disease Dataset 

(NCBI) 

Genes Dataset 

(BioCreative-II)) 

Preprocessing 

Word2Vec (Baseline) FastText (Proposed) 

Word Embedding 

Logistic Regression (LR) Classification 

Evaluation 

Cop
yri

gh
t@

FTSM



PS-FTSM-2020-013 

 

Preprocessing 

In this section, the preprocessing tasks that have been utilized will be discussed. The aim of 

preprocessing is to convert the data into a suitable format that is able to be processed either via 

Word2vec or FastTest embedding models. In this regard, there are two different preprocessing tasks 

that have been applied each of which has been dedicated to one of the two embedding models. 

Following subsections will describe the two tasks.  

Preprocessing for Word2Vec 

Since Word2Vec is intended to configure wide range of text contexts, and since the two datasets 

that have been used in this study are containing word for each row thus, it is important to convert both 

datasets from word-level into sentence-level. For this purpose, a streaming of word read will be applied 

until encountering a period ‘.’ which would refer to the end of sentence. Figure 2 shows an example of 

this task.  

 
Figure 2.  Convert words of dataset into sentences 

 

As shown in Figure 2, every word has been joined to the proceeding one until encountering a period 

of ‘.’ where such period would end the merging of words. Note that, this sentence conversion will 

occur for generating word embedding through Word2Vec.  

Preprocessing for FastText 

Unlike the Word2Vec, FastText has the ability to generate word embedding based on the character 

N-gram rather than the word context. Therefore, there is no need for word-to-sentence conversion. 

However, to make FastText generate accurate embedding for the words, it is important to concatenate 

each class label with the word “__label__”. This word is added to tell the FastText model that such 

word is a class label. Table 3 shows an example of performing such task. 

 

Table 3  Example of transforming classes 

Word Original Class Transformed Class 

A O __label__O 

common O __label__O 

human O __label__O 

skin I-UN __label__I-UN 

tumour I-UN __label__I-UN 

is O __label__O 

caused O __label__O 

by O __label__O 

activating O __label__O 

mutations O __label__O 

in O __label__O 

beta-catenin O __label__O 

. O __label__O 

Cop
yri

gh
t@

FTSM



PS-FTSM-2020-013 

 

Word Embedding Using Word2Vec 

Word embedding technique is intended to analyze a large text set in order to give an embedding for 

each distinctive word (Levy and Goldberg, 2014). The most common architecture of word embedding 

is the Word2Vec (Goldberg and Levy, 2014). Such architecture is a feed-forward neural network that 

inputs the one-hot vector of a word and outputs the one-hot vector of the proceeding word. Once the 

neural network finishes the training and learning to output the target vector, the hidden neurons’ values 

will correspond to the desired embedding. To understand the exact workflow of Word2Vec, let 

consider a converted sentence resulted from preprocessing in Figure 3.2. 

Sentence S = “most cancers arise from mutations” 

Prior to process such sentence through the Word2Vec, it is important to transform it into a one-hot 

encoding. Such encoding aims at generating initial vectors for each word to be processed through the 

neural network architecture (Seger, 2018). To do so, a table of word-to-word matrix should be initiated. 

Such table will be populated with ones and zeros where the value one refers to a correspondence 

among the term and the value zero refers to the non-correspondence. Correspondence refers to the 

matching of the same word. Note that, insignificant terms such as stop-words (e.g. the words ‘most’ 

and ‘from’ in sentence S) will be discarded. Table 4 depicts the one-hot encoding of S. 

Table 4  One-hot encoding for sentence S 

 cancers arise mutations 

cancers 1 0 0 

arise 0 1 0 

mutations 0 0 1 

As shown in Table 4, the correspondence between the word ‘cancers’ from the first column and the 

word ‘cancers’ from the first row has been populated with a value of ‘1’. Otherwise, the remain cells 

have been populated with a value of ‘0’.  

After generating the one-hot encoding matrix, there are two ways to process the vectors of words. 

The first way is known as Continuous Bag of Words (CBOW) which aims to input multiple context 

words and output the target or center word between them. Let consider the vectors of the context words 

as follow: 

Vector of context word 1 ‘cancers’ 1 0 0 

Vector of context word 2 ‘mutations’ 0 0 1 

On the other hand, the target word would be listed as follow: 

Vector of target word ‘arise’ 0 1 0 

Note that, the target word is chosen through a loop where every word in a sentence will be selected 

as target in each iteration 

Now, both context words will be processed as input and the target word as output through the 

CBOW architecture as shown in Figure 3. 

 
Figure 3 Word2Vec (CBOW) architecture 

1 

0 

0 

0 

0 

1 

h1 

h2 

h3 

0 

1 

0 

C
o

n
text W

o
rd

 1
 =

 ca
n

cers 
C

o
n

text W
o

rd
 2

 =
 m

u
ta

tio
n

s 

T
a

rg
et W

o
rd

 =
 a

rise
 

Input Layer 

Hidden Layer 

Output Layer 

Word2Vec CBOW 

Window size = 2 

Dimension = 3 

Cop
yri

gh
t@

FTSM



PS-FTSM-2020-013 

 

 As shown in Figure 3.3, both context words have been processed as input and the target word 

has been set as output. Note that, a hidden layer that matches the size of each word (i.e. 3) has been 

considered. The size of each word corresponds to the dimension where three neurons have been 

articulated for each word along with the hidden layer. On the other hand, the window size refers to the 

number of words that are being considered in the input layer. In our case, the number was 2 which 

corresponds to the two context words.  

Consequentially, as in any neural network architecture, input-to-hidden weights Wh = {Wh1, Wh2, 

…, Whn} are being initiated with random values. Then, the hidden neurons values hi can be obtained 

by calculating the following equation: 

  𝒉𝒊 =  ∑ 𝑾𝒉𝒊 × 𝑰𝒏𝒑𝒖𝒕𝒊 (1) 

Where Input refers to the value of neurons in input layers. After acquiring the hidden values, the 

hidden-to-output weights Wo = {Wo1, Wo2, …, Won} will be initiated with random values. Then, the 

output neuron values Oi can be obtained by calculating the following equation: 

  𝑶𝒊 =  ∑ 𝑾𝒐𝒊 × 𝒉𝒊 (2) 

After acquiring the resulted output values, a comparison will be made with the actual output values, 

if there is a relative variance, a training process will take a place where the random weights in both 

input-to-hidden and hidden-to-output will be re-adjusted. This process will continue until the resulted 

output values match the actual output values. Once, the matching is obtained, the values of hidden 

neurons will be considered as embedding vector of the target word.  

On the other hand, the second way of processing the one-hot vectors of sentence S is by using Skip-

gram architecture. Such architecture is the opposite of CBOW where the aim is to input a target word 

and attempt to output the context words as in Figure 4. 

 
Figure 4 Word2Vec (Skip-gram) architecture 

Similar to the CBOW, Skip-gram contains a window size of 2 which refers to the number of context 

words that are intended to be predicted. As well as, the dimension is 3 which corresponds to the 

number of neurons of each word’s vector.  

On the other hand, the same procedures of training and weight adjusting that discussed in CBOW, 

will be repeated in Skip-gram until the resulted output values match the actual output values. At that 

moment, the hidden neurons’ values will be considered as the embedding for the target word.  

Table 5 depicts an arbitrary example of resulted embedding for each word whether by CBOW or 

Skip-gram.  

 

 

 

 

 

0 

1 

0 

0 

0 

1 

h1 

h2 

h3 

1 

0 

0 

C
o

n
text W

o
rd

 1
 =

 ca
n

cers 
C

o
n

text W
o

rd
 2

 =
 m

u
ta

tio
n

s 

T
a

rg
et W

o
rd

 =
 a

rise
 

Input Layer 

Hidden Layer 

Output Layer 
Word2Vec Skip-gram 

Window size = 2 

Dimension = 3 

Cop
yri

gh
t@

FTSM



PS-FTSM-2020-013 

 

Table 5  Arbitrary example of resulted embedding of Word2Vec 

 Embedding (Dimension = 3) 

cancers -0.6345 0.9371 0.2649 

arise -0.6754 0.9366 0.2679 

mutations -0.6492 0.9299 0.2813 

Word Embedding Using FastText 

With the emergence of Word2Vec architecture, numerous applications have been utilizing such 

architecture for different tasks such as NER or other text classification problems. Yet, a remarkable 

problem has been arisen with the use of Word2Vec. Such problem is known as ‘out-of-vocabulary’ 

which refers to the cases where the model of Word2Vec would not have an embedding vector for 

specific word. This absence of embedding simply means that the Word2Vec never seen such word 

within the training.  

This problem has been resolved by some normalization mechanisms where the unseen word can be 

replaced with a vector of zeros. However, sometimes such normalized vector would loss the meaning 

of significant words. For example, the word ‘cancers’ that has been trained in the previous section has 

an embedding shown in Table 3.7, but if such words have different derivational inflection such as the 

word ‘cancer’ that did not occur in the training and occurred in the testing. In this case, the normalized 

vector of zeros that would be given to such unseen word, will mislead the machine learning 

classification model. This is because the machine learning model would see such word equivalent to 

other insignificant and unseen terms.  

For this purpose, the FastText architecture has been introduce by Facebook to solve the 

aforementioned problem. FastText aims at processing the possible character N-gram of each term and 

take the average vector of them as a final embedding for the term (Pylieva, et al., 2018). To understand 

such mechanism, let consider the word ‘cancers’ as an example. Similar to Word2Vec, FastText will 

generate a one-hot encoding matrix. However, instead of considering the surrounding words of 

‘cancers’, FastText will examine the possible character N-gram of the word itself as shown in Table 6. 

Table 6  One-hot encoding for possible N-gram of word ‘Cancers’ 

 ca an nc ce er rs 

ca 1 0 0 0 0 0 

an 0 1 0 0 0 0 

nc 0 0 1 0 0 0 

ce 0 0 0 1 0 0 

er 0 0 0 0 1 0 

rs 0 0 0 0 0 1 

To process the vectors of each possible N-gram, FastText contains the same two approaches of 

CBOW and Skip-gram. The first architecture intends to input multiple context character N-gram 

vectors and output a target character N-gram vector. Whereas, the second architecture intends to input a 

target character N-gram vector and output the context character N-gram vectors. Figure 5 and Figure 6 

depicts the CBOW and Skip-gram architectures of FastText respectively.  

As shown in Figure 3.5 and Figure 3.6, the dimension is 6 which corresponds to the total number of 

possible character N-gram of the word ‘Cancers’ (i.e. ‘ca’, ‘an’, ‘nc’, ‘ce’, ‘er’, ‘rs’). Whereas, the 

window size is 5 which corresponds to the number of context character N-gram vectors where the sixth 

will be the target.  Cop
yri

gh
t@

FTSM



PS-FTSM-2020-013 

 

 

Figure 5 FastText (CBOW) architecture 

1 

h1 

h2 

h3 

C
o

n
text C

h
a

r 1
 =

 ca
 

Input Layer 

Hidden Layer Output Layer 

FastText CBOW 

Window size = 5 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 

0 

Dimension = 6 

h4 

h5 

h6 

0 

0 

0 

0 

0 

1 

C
o

n
text C

h
a

r 2
 =

 a
n
 

C
o

n
text C

h
a

r 3
 =

 n
c 

C
o

n
text C

h
a

r 4
 =

 ce 
C

o
n

text C
h

a
r 4

 =
 er 

T
a

rg
et C

h
a

r =
 rs 

Cop
yri

gh
t@

FTSM



PS-FTSM-2020-013 

 

 

Figure 6 FastText (Skip-gram) architecture 

Similar to the Word2Vec, the FastText architecture will also utilize the weight adjustment in order 

to match the calculated output and the actual output. Once such matching is occurred, the hidden 

1 

h1 

h2 

h3 

C
o

n
text C

h
a

r 1
 =

 ca
 

Input Layer Hidden Layer 

Output Layer 

FastText Skip-gram 

Window size = 5 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 

0 

Dimension = 6 

h4 

h5 

h6 

0 

0 

0 

0 

0 

1 

C
o

n
text C

h
a

r 2
 =

 a
n
 

C
o

n
text C

h
a

r 3
 =

 n
c 

C
o

n
text C

h
a

r 4
 =

 ce 
C

o
n

text C
h

a
r 4

 =
 

er 

T
a

rg
et C

h
a

r =
 rs 

Cop
yri

gh
t@

FTSM



PS-FTSM-2020-013 

 

neurons’ values will consider to be the embedding vector for the target character N-gram. Let assume 

that the FastText (whether using CBOW or Skip-gram) finishes the training and produce embedding 

for each character N-gram as shown in Table 7.  

Table 7  Arbitrary example of resulted embedding of FastText 

 Embedding (Dimension = 6) 

ca 0.4345 0.9371 0.2649 0.9371 0.2649 0.2649 

an 0.4754 0.9366 0.2679 0.9366 0.2679 0.2679 

nc 0.4492 0.9299 0.2813 0.9299 0.2813 0.2813 

ce 0.4345 0.9371 0.2649 0.9371 0.2649 0.2649 

er 0.4754 0.9366 0.2679 0.9366 0.2679 0.2679 

rs 0.4492 0.9299 0.2813 0.9299 0.2813 0.2813 

 Now, in order to get the embedding of the word ‘Cancers’, FastText will take the mean 

average of the six embedding vectors in Table 8. Table 9 depicts such process.  

Table 8 Final word embedding by FastText 

 Embedding (Dimension = 6) 

ca 0.4345 0.9371 0.2649 0.9371 0.2649 0.2649 

an 0.4754 0.9366 0.2679 0.9366 0.2679 0.2679 

nc 0.4492 0.9299 0.2813 0.9299 0.2813 0.2813 

ce 0.4345 0.9371 0.2649 0.9371 0.2649 0.2649 

er 0.4754 0.9366 0.2679 0.9366 0.2679 0.2679 

rs 0.4492 0.9299 0.2813 0.9299 0.2813 0.2813 

Cancers (Average) 0.453033 0.934533 0.271367 0.934533 0.271367 0.271367 

In this case, FastText will give both ‘Cancer’ and ‘Cancers’ similar embedding vector and the 

machine learning would learn the relationship between them.  

Logistic Regression (LR) 

After building both Word2Vec and FastText models for both datasets, this section will take a place 

where an LR classifier is being used to classify the data into BNEs or not. However, prior to the 

classification, it is important to replace every word in the two datasets with its matching embedding 

from the models. To do so, the original datasets (i.e. not preprocessed) of NCBI and BioCreative-II will 

be brought. Consequentially, two replacement tasks will be applied; the first replacement aims at 

substituting each word within the two datasets by its equivalent embedding from Word2Vec model, 

while the second replacement aims at substituting each word within the two datasets by its equivalent 

embedding from FastText model. Table 9 and Table 10 depict the replacement for both NCBI and 

BioCreative-II datasets respectively. 

Table 9 Example of embedding replacement for NCBI 
Original NCBI NCBI replaced by Word2Vec  NCBI replaced by FastText 

Word Class Word2Vec Embedding Class  FastText Embedding Class 

(V1 V2 .. Vn)  (V1 V2 .. Vn) 

A O 0.64 0.33 .. 0.51 O  0.98 0.75 .. 0.11 O 

common O 0.12 0.15 .. 0.46 O  0.63 0.38 .. 0.41 O 

human O 0.11 0.13 .. 0.39 O  0.16 0.19 .. 0.54 O 

skin I-UN 0.97 0.96 .. 0.63 I-UN  0.44 0.65 .. 0.63 I-UN 

. . . . .. . .  . . .. . . 

. . . . .. . .  . . .. . . 

 

Table 10 Example of embedding replacement for BioCreative 
Original BioCreative-

II 

BioCreative-II replaced by 

Word2Vec 

BioCreative-II replaced by 

FastText 

Word Class Word2Vec Embedding Class FastText Embedding Class 

(V1 V2 .. Vn) (V1 V2 .. Vn) 

SIP1  I-UN 0.96 0.76 .. 0.22 O 0.63 0.32 .. 0.73 O 

(  O 0.66 0.26 .. 0.43 O 0.55 0.23 .. 0.34 O 

Smad  I-UN 0.27 0.55 .. 0.78 O 0.56 0.22 .. 0.66 O 

interacting  I-UN 0.39 0.46 .. 0.52 I-UN 0.23 0.46 .. 0.77 I-UN 

. . . . .. . . . . .. . . 

. . . . .. . . . . .. . . 

 As shown in Table 9 and Table 10, every word will be replaced with its embedding either 

from Word2Vec or FastText models. The embedding of brought from each model has a length of n 

which corresponds to the dimension of embedding. 

 Now, the LR classifier can train on a subset of the data and tested on the rest of the data. The 

reason behind using LR is that it considered as a straightforward classification where the relationship 

Cop
yri

gh
t@

FTSM



PS-FTSM-2020-013 

 

between the dependent variable (i.e. class label) and the independent variables (i.e. embedding vectors) 

can be accurately identified (Goldberg and Levy, 2014). The equation of learning function used by LR 

can be shown as follow (Khammassi and Krichen, 2017): 

  𝓵 = 𝐥𝐨𝐠
𝒑

𝟏−𝒑
=  𝜷𝒙𝟏 + 𝜷𝒙𝟐  (3) 

where ℓ is the log-odds of the class labels, p is the class label (i.e. BNE or not), 𝛽 is a constant 

parameter of LR, x1 and x2 are the embedding vectors.  

RESULT 

To investigate the actual difference between using Word2Vec and FastText as a word 

embedding model, this section is intended to accommodate a comparison between the two 

models. For this purpose, only f-measure will be considered within the comparison since it is 

considered the harmony of precision and recall. In addition, both datasets are considered 

within the comparison. Table 11 and Figure 7 show the results of the comparison.  

Table 11  Comparison based on F-measure 

Dataset Word2Vec  FastText  

NCBI 0.73516 0.96616 

BioCreative-II 0.49463 0.97464 

 

Figure 7 Performances of the two models on BNER dataset 

As shown in Table 11, for NCBI dataset, the results of F-measure indicate the superiority 

of FastText over the Word2Vec where F-measure was 0.96 compared to 0.73 acquired by 

Word2Vec. 

 Similarly, for the BioCreative-II dataset, the results of F-measure showed the same 

superiority has been depicted by FastText over the Word2Vec where F -measure was 0.97 

compared to 0.49 acquired by Word2Vec. 

 In fact, such outperformance depicted by FastText a main reason of the ultimate 

minimization of out-of-vocabulary instances. Since Word2Vec is concentrating on the word 

0
.7
3
5
1
6

0
.4
9
4
6
3

0
.9
6
6
1
6

0
.9
7
4
6
4

N C B I B IOCREAT I V E - I I

F-
M
EA

SU
R
E

DATASETS

COMPARISON THE MODELS

Word2Vec FastText

Cop
yri

gh
t@

FTSM



PS-FTSM-2020-013 

 

as context and target terms where the only the word unit is considered thus, it makes sense 

that there will be numerous words that do not yield any embedding. This is because simply 

the Word2Vec would not determine the inflectional derivations that might occurred to the 

terms (e.g. ‘cancer’ and ‘cancers’).  

In contrast, the FastText depends on the character N-gram of the words in order to 

generate the embedding. Therefore, the inflectional derivations will be resolved by the model 

since at least one of the derivations would have an embedding within the model.  

CONCLUSION 

This study aims to propose an efficient word embedding using FastText model for the 

BNER task. Such model has the ability to consider the character N-gram of each word in 

order to produce its embedding. This would contribute toward minimizing the out-of-

vocabulary words. In particular, this study utilizes two benchmark biomedical datasets; the 

first for disease names, and the second for gene expressions. In addition, an LR classifier has 

been utilized to accommodate the classification after getting the embedding of FastText. 

Results of applying the proposed embedding showed an outperformance compared to the 

baseline where an F-measure of 96.61% has been acquired from the first dataset, and an F-

measure of 97.46% has been acquired from the second dataset. These results demonstrate the 

effectiveness of using FastText as a word embedding technique for BNER. For future 

researches, incorporation additional information to the FastText embedding vectors such as 

the term frequency would contribute toward improving the classification of BNEs. 

REFERENCES 

Alshaikhdeeb and Ahmad. 2016. Biomedical Named Entity Recognition: A Review, 

International Journal on Advanced Science, Engineering and Information Technology, 

Vol. 6 No. 6, pp. 889-895  (Access 2016 

Bhasuran, et al. 2016. Stacked Ensemble Combined with Fuzzy Matching for Biomedical 

Named Entity Recognition of Diseases, Journal of biomedical informatics, Vol. 64 No. 

2016, pp. 1-9  (Access 2016 

Chen, et al. 2019. Named entity recognition from Chinese adverse drug event reports with 

lexical feature based BiLSTM-CRF and tri-training, Journal of biomedical informatics, 

Vol. 96, pp. 103252  (Access 2019 

Cho and Lee. 2019. Biomedical named entity recognition using deep neural networks with 

contextual information, BMC bioinformatics, Vol. 20 No. 1, pp. 735 

https://doi.org/10.1186/s12859-019-3321-4 (Access 2019 

Doğan, et al. 2014. NCBI disease corpus: a resource for disease name recognition and concept 

normalization, Journal of biomedical informatics, Vol. 47, pp. 1-10  (Access 2014 

Goldberg and Levy. 2014. word2vec Explained: deriving Mikolov et al.'s negative-sampling 

word-embedding method, arXiv preprint arXiv:1402.3722,  (Access 2014 

Gridach. 2017. Character-level neural network for biomedical named entity recognition, 

Journal of biomedical informatics, Vol. 70, pp. 85-91 

http://www.sciencedirect.com/science/article/pii/S1532046417300977 (Access 2017 

Khammassi and Krichen. 2017. A GA-LR wrapper approach for feature selection in network 

intrusion detection, Computers & Security, Vol. 70, pp. 255-277 

http://www.sciencedirect.com/science/article/pii/S0167404817301244 (Access 2017 

Levy and Goldberg. 2014. Dependency-based word embeddings, Proceedings of the 52nd 

Annual Meeting of the Association for Computational Linguistics (Volume 2: Short 

Papers), pp. 302-308. 

Li and Jiang. 2017. Biomedical named entity recognition based on the two channels and 

sentence-level reading control conditioned LSTM-CRF, 2017 IEEE International 

Conference on Bioinformatics and Biomedicine (BIBM), pp. 380-385. 

Pylieva, et al. 2018. Improving automatic categorization of technical vs. Laymen medical 

words using FastText word embeddings. 

Cop
yri

gh
t@

FTSM

https://doi.org/10.1186/s12859-019-3321-4
http://www.sciencedirect.com/science/article/pii/S1532046417300977
http://www.sciencedirect.com/science/article/pii/S0167404817301244


PS-FTSM-2020-013 

 

Seger. 2018. An investigation of categorical variable encoding techniques in machine 

learning: binary versus one-hot and feature hashing. 

Smith, et al. 2008. Overview of BioCreative II gene mention recognition, Genome biology, 

Vol. 9 No. Suppl 2, pp. S2  (Access 2008 

Zhu, et al. 2017. GRAM-CNN: a deep learning approach with local context for named entity 

recognition in biomedical text, Bioinformatics, Vol. 34 No. 9, pp. 1547-1554  (Access 

2017 
 

Cop
yri

gh
t@

FTSM




