
PS-FTSM-2020-001

 1 | Page

A COMPARITIVE STUDY OF CONVOLUTIONAL NEURAL NETWORK
MODELS FOR DETECTION, CLASSIFICATION AND COUNTING OF

VEHICLES IN TRAFFIC

Azizi Abdullah and Jaison Raj Oothariasamy
Faculty of Technology and Information Science, Universiti Kebangsaan Malaysia,

azizia@ukm.edu,my, jaisonhealer18@gmail.com

 Abstract: Deep Learning based networks especially Convolutional Neural Network (CNN) models are widely used in vehicle
detection, classification and counting system. On the other hand, transfer learning is a process of re-using a trained model
to solve a problem similar to the one it was trained. Two ways of implementing transfer learning are direct usage of a model
as a classifier and usage of a pre-trained model as a weight initialization for training with a new dataset. With recent
development in the field of deep learning, many CNN models and architectures are available which makes the selection of a
suitable model for performing vehicle detection, classification and counting a big challenge. Besides that, a tracking method
is also required to track the vehicles in the video sequences so that the counting can be done as accurate as possible. In this
project three types of CNN models i.e. SSD Inception, Faster R-CNN ResNet and Yolo DarkNet were tested on 10 traffic video
samples using transfer learning methods (classifier). Those three models were selected for comparison based on the
popularity and availability of many research studies in recent time. The models were compared based on number of vehicles
detected, accuracy and processing time. A simple vehicle tracking method was also developed to aid the counting process.
Results showed that Yolo DarkNet was the best performing model with an average accuracy of 66.29 % and average processing
time of 0.264 seconds per-frame. It also achieved the highest accuracy of 96.32% in bright conditions. SSD Inception was the
fastest at 0.135 seconds per-frame but the average accuracy was lowest at 14.53%. However, all three models performed
poorly in low light conditions where Yolo DarkNet performed between 2.8% to 3.5% accuracy. To overcome this problem,
another method of transfer learning (weight initialization) was used to re-train the Yolo DarkNet model with annotated

images from low light traffic videos. The re-trained model achieved a maximum of 76.73% in accuracy in low light scenario.

Keywords: CNN, Transfer Learning, Deep Learning, Vehicle Detection

I.INTRODUCTION

Rapid increase of road traffic density in major cities has raised the need for
automated vehicle monitoring system specifically for traffic measurements and forecasting
purposes. Generated statistics are used in road infrastructure planning, such as road
widening, traffic intersection and fly-overs construction, foot bridges, underpasses,
pedestrian paths building and adding motorcycle lanes.

In earlier days before the rise of machine learning, the vehicle counting was done

manually. Counting was done by a person standing by the road side; using an electronic
device to record the data using a tally sheet. In some cases, the person may do the counting
by observing video footage captured by citycams or CCTVs placed above the road or
highway. According to a study by Zheng et al. (2012), manual vehicle calculation is 99%
accurate. This investigation is based on a manual calculation of the vehicle from a 5
minutes video recording. It was found that calculation errors are usually less than 1% while
classification errors are more prominent, with an average of 4% to 5% error rate. Although
manual method provides high accuracy, it requires huge amount of man power. Therefore,
manual calculations are usually performed with only a small sample of data and the results
are extrapolated for the whole year or season for long-term forecasts. Recent advancement
in the field of computer vision have enabled the development of automated vehicle
counting systems with the similar accuracy as human calculations. It can also be used for
continuous monitoring and counting over time with less human intervention. Computer
vision-based vehicle calculation methods have several advantages over manual or other
automated calculation methods.

Two important advantages are cost and flexibility. This method is cost effective as

it can count many instances at once or parallelly which means only one camera is required
for multiple lanes or intersections. Secondly is flexibility. It is flexible to add or change
areas where vehicles need to be counted by using filters to determine lanes or paths that
need to be counted.

Cop
yri

gh
t@

FTSM

A COMPARITIVE STUDY OF CONVOLUTIONAL NEURAL NETWORK MODELS FOR DETECTION,
CLASSIFICATION AND COUNTING OF VEHICLES IN TRAFFIC

2 | Page

In general, the process of calculating vehicles based on computer vision can be

divided into three stages: vehicle detection, tracking and counting. The first step,
detection of vehicles can be accomplished with either Traditional Method or Deep Learning
method. Traditional object detection methods are built on handcrafted features with
shallow design that can be trained. However, when complex features are constructed with
a combination of low-level image features and high-level contexts of object detection and
scene classification, traditional model performance will stall (Zhao et al., 2019). Some of
the most commonly used handcrafted methods are Background Subtraction, Optical Flow,
SIFT (Scale Invariant Features Transform) and HOG (Histogram of Oriented Gradients). On
the other hand, Deep Learning techniques learn categories gradually through the hidden
layers in its architecture. For example, in face image recognition, it starts with a low level
to identify bright and dark areas, then recognizes lines and shapes for facial recognition.
Each neuron or node in the network represents one feature or aspect and together they
give a full representation of the image. Each hidden node or layer is represented by a
weight value that will influence the outcome (output) and this value can be changed during
the learning process. In traditional method, many of the features used should be identified
to reduce data complexity and simplify the learning process of algorithms with a clearer
pattern. The advantage of the deep learning method is that it tries to learn the high-level
features of the data in stages, so the extraction of the features does not need to be
encoded. For an example in case of multiple object detection problems, deep learning
techniques such as YOLO (You Only Look Once) (Joseph et al., 2015) capture images as
inputs and provide the location and name of objects on output. But in traditional method
that uses algorithms like SVM, a bounding box object detection algorithm is required first
to identify all possible objects to have the HOG as input to the learning algorithm in order
to recognize relevant objects. (Kashyap et al., 2019)

Deep learning has its own disadvantage too. The problem with deep learning is the

reliance on large training datasets for networks to learn patterns in data (Chuanqi Tan et
al., 2018). Therefore, a large dataset needed if a deep learning network needs to be trained
from the scratch which is costly and time consuming (Pan et al., 2010). To overcome this
problem, transfer learning may be used. Transfer learning is method to make use of the
knowledge gained while solving one problem and applying it to a different but related
problem. For example, knowledge gained while learning to recognize cars can be used to
some extent to recognize trucks. This method saves training time and requires only a small
amount of training data compared to training the model to recognize truck from the
beginning. There are four ways to reuse a trained model (Jason Brownlee, 2019): as a
classifier, standalone feature extractor, integrated feature extractor or used for weight
initialization. With recent rapid innovations in architecture and training of convolutional
Neural Networks, there are many pre-trained models made available on public domain with
a permissive license for general use. These CNN models can be used by means of transfer
learning (classifiers) to implement the vehicle detection.

 The general availability of many pre-trained deep learning models might

ease the implementation of an automated vehicle counting system, but the main challenge
is to identify the best pre-trained models that can fit to a given custom dataset. The direct
comparisons between them are difficult due to different base feature extractors, different
default image resolutions and different hardware and software platforms that maybe used
to develop the system. Each model may have its own advantages and disadvantages.

Some studies have been done to compare various available CNN models as detector

in general such as Huang et. al (2016), Alvaro Arcos-Garc'ıa et. al. (2018), and Nikhil et al.
(2017) to name few. There are also studies specifically on using deep learning models for
vehicle counting systems such as Arinaldi et al. (2018), Singh Chauhan, Mayank et. al. (2019)

Cop
yri

gh
t@

FTSM

A COMPARITIVE STUDY OF CONVOLUTIONAL NEURAL NETWORK MODELS FOR DETECTION,
CLASSIFICATION AND COUNTING OF VEHICLES IN TRAFFIC

3 | Page

and Dey Bhaskar et al., (2019). Each study has varying results which highlights the strengths
and weaknesses of each pretrained models. It seems the performance of models are greatly
associated with the local dataset and the characteristics of the vehicle movement. Thus,
there is no one CNN model that fits all situation as to provide the optimal detection result.

The next step after vehicle detection is the tracking phase. Tracking is important

to identify the same vehicles that appear on consecutive frames as not to be counted more
than once during the counting phase. An efficient method to track the vehicle need to be
constructed. Finally, the selected model must be improved. This is necessary because the
models used to develop the counting system is pre-trained with generally available datasets
such as COCO dataset, ImageNet dataset or VOC dataset. This may cause the models to
overfit and perform poorly in certain conditions mainly on poor lighting situations as
mentioned by Dey Bhaskar et al., (2019).

This paper will address three main issues in construction of an effective vehicle

counting system. Firstly, the selection of the best model to be use on the local custom
dataset must be determined by means of comparison between few shortlisted models. Next
is to address the vehicle tracking method to aid the counting mechanism and finally
improvising the performance of the selected model to overcome the overfitting problem
due to dataset used to pre-train the model. The improvisation is done using weight
initialization method as mentioned by Jason Brown Lee (2019).

II.RELATED WORK

One of the biggest challenges in the field of applied Convolutional Neural Network
is to identify the best architecture for implementation. The best CNN architecture must
be able to provide the best results by accuracy and use efficient computation technics
(Aghdam et al., 2017). This is because the accuracy metrics such as the mean Average
Precision (mAP) might not provide a holistic picture. Other important metrices such as
execution time and memory usage must be considered as well. Many researches are done
to ease this selection by providing comparative studies on various CNN architectures.

In one study by Jonathan Huang et al., (2016), a comparison is presented on

different combinations of meta-architectures (Faster R-CNN, R-FCN and SSD) with feature
extractors (Inception Resnet V2, inception v2, Inception v3, MobileNet, ResNet101 and
VGG). They used a high-end hardware with 32GB RAM, Intel Xeon E5-1650 v2 processor and
a Nvidia GeForce GTX Titan X GPU card. Timings were reported on GPU for a batch size of
one. The detection pipeline for all models (SSD, Faster R-CNN and R-FCN meta-
architectures) were constructed on Tensorflow platform. This allows easy swapping of
feature extractor architectures, loss functions. It also allows for easy portability to various
other platforms for deployment. The performance of the models varies in terms of
detection accuracy, GPU utilization time and memory utilization. The study also identified
sweet spots on the accuracy/speed trade-off curve where gains in accuracy are only possible
by sacrificing speed. Two CNN architecture that fit into such sweet spot was R-CNN with
ResNet101 and R-FCN with ResNet 101.

Yadav et al., (2017) present a comparative study of CNN models using deep learning

library of Tensorflow due its portability and ease of use. They used the COCO dataset for
evaluation. The hardware used was Nvidia Titan X GPU card, on a 32 GB RAM device with
Intel Xeon E5-1650 v2 processor. The images were resized, and the dimensions were either
300X300 or 600X600 pixels. The timings were averaged for 450 images. In this study, they
found that SSD and R-FCN models are faster in processing compared to other CNN models.
Meanwhile Faster R CNN was the slowest in detection where it took 100ms to process each
image. But it was the one with highest accuracy.

Cop
yri

gh
t@

FTSM

A COMPARITIVE STUDY OF CONVOLUTIONAL NEURAL NETWORK MODELS FOR DETECTION,
CLASSIFICATION AND COUNTING OF VEHICLES IN TRAFFIC

4 | Page

Arcos-Garc'ıa et al., (2018) presented another comparison which was among

combinations of four meta-architectures ((Faster R-CNN, R-FCN, SSD, dan YOLOv2) and six
different extractors (Resnet V1 50, Resnet V1 101, Inception V2, Inception Resnet V2,
Mobilenet V1, dan Darknet19). The experiments were using dataset which consists of street
signboards. The study concluded Faster R-CNN Inception ReNet v2 as the best mAP. Yolov2
came second and R-FCN ResNet 101 was mentioned as a balanced architecture between
accuracy and execution time. The advantages of Yolov2 against other models was stressed
by Du (2018). In his research, he mentioned Yolov2 achieving 76.8mAP at 67FPS and 78.6
mAP at 40 FPS beating other models based on Faster RCNN and ResNet.

With the availability of pre-trained models, recently there has been many research

and studies to compare the performance of deep learning methods and handcrafted
methods for vehicle detection and counting systems as well. A study by Hardjono et al.,
(2018) presents a comparative investigation of vehicle counting using various machine
learning methods and specifically compares handcrafted method with deep learning
method. The comparison was done between Background subtraction, Viola Jones and Yolo
using four datasets which were taken from existing CCTV image data. Quantitative
evaluation, F1 and precision scores were obtained. Based on experiments, F1 scores for
vehicle counting ranging from 0.32 to 0.75 have been successfully obtained for one low
resolution dataset by using Background Subtraction and Viola Jones methods. This study
also mentioned that Viola Jones method can improve F1 score, by about 39% to 56%, over
Back Subtraction method. However, the use of YOLO yielded even better results, with F1
scores ranging from 0.94 to 1 and its precision ranges from 97.37% to 100%.

Another study by Arinaldi et al., (2018) concluded that the Faster RCNN is more

suitable for the problem of detection and classification of vehicles in a dynamic traffic
scene with moving vehicles. In this paper, a comparison of performance was done on system
based on MoG background subtraction with SVM classifier and a system based on the Faster
RCNN. A set of annotated images with six class labels were used to train the Faster RCNN
model. The results of the experiments show that MOG with linear SVM produce highest
counting accuracy of 59.1% and Faster R-CNN achieving 69.4%. It is also found that
detection and classification of vehicles for night time data poses a challenge for the MoG
background subtraction. This is mainly due to bright lights and various reflections on the
traffic scene. On the other hand, Faster RCNN does not show such problem because it was
trained to detect vehicles based on appearances and not based on the changes in pixel value
which is sensitive to lighting and shadows.

While most of the vehicle counting research are based on cctv video footages, there

are also studies on car detection and counting using UAVs (Unmanned Aerial Vehicles). One
such research by Ammour et al., (2017) suggests a deep convolutional neural network (CNN)
system that is already pre-trained on huge auxiliary data as a feature extraction tool,
combined with a linear support vector machine (SVM) classifier to classify regions into “car”
and “no-car” classes. The experimental results on five UAV images show that the proposed
method outperformed handcraft methods, both in terms of counting accuracy (as high as
90%) and computational time (from hours to minutes).

A previous study on implementation of transfer learning has shown that the pre-

trained classifiers can be improved by re-training the model with new annotated images
(weight initialization method for transfer learning). Singh et al., (2019) presented a study
on usage of trained Yolo models on vehicle counting. YOLO models which is pre-trained on
the MS-COCO dataset was used. The researchers did a transfer learning by re-training it on
the PASCAL VOC 2007 and the KITTI datasets. This is followed by another round of training
using custom annotated datasets. Five different YOLO models were generated by such fine

Cop
yri

gh
t@

FTSM

A COMPARITIVE STUDY OF CONVOLUTIONAL NEURAL NETWORK MODELS FOR DETECTION,
CLASSIFICATION AND COUNTING OF VEHICLES IN TRAFFIC

5 | Page

tuning, each model using exclusively the training data from a single camera installation.
For four installations, this yields four YOLO models. The fifth model is a combination of
the training data from all installations. Around 75% MAP was achieved on an 80-20 train-
test split using 5562 videoframes from four different locations.

Another research was on vehicle counting using transfer learning techniques on

MobileNet models by Dey et al., (2019). A MobileNet model which was pre-trained on the
ImageNet dataset with size of 224×224 pixels were adopted. With a limited set of training
images, the accuracy of vehicle detection was 97.4%. As for traffic volume estimates
(counting accuracy) at the intersections, it was 78%. There were two important highlights
in this study. Firstly, the performance was bad in case of highly overlapping of vehicles
(occlusion). Secondly, the detection results at night or under very low-illumination
conditions are also poor. The author suggested that the overall performance and speed of
computation, could be improved by using a GPU-based multi-scale vehicle segmentation
technique with an analysis of each vehicle for their direction.

III.METHODS

The high-level methodology of this research is presented by Figure 1.

Figure 1. Research Framework

Three stages for the execution of the research. Firstly, the experiment to compare

3 CNN Models which are shortlisted and benchmarking. The best model is selected to be re-
trained to improve the performance (on poor illumination) and overcome the overfitting
problem. Finally experiment II to compare the performance of the re-trained model with
the pre-trained model.

A. Experiment I

Three CNN models are shortlisted based on the past studies, availability of pre-trained
models and ease of implementation on Tensorlow framework. The model are:

1. SSD Inception V2
2. Faster RCNN ResNet101
3. YOLOv3 Darknet19

All the pre-trained models are trained on COCO dataset and available on the
Tensorflow detection model zoo (2019) and TensorNets (Tae Hoon Lee, 2018). The overall
design of this experiment is depicted by Figure 2:

Cop
yri

gh
t@

FTSM

A COMPARITIVE STUDY OF CONVOLUTIONAL NEURAL NETWORK MODELS FOR DETECTION,
CLASSIFICATION AND COUNTING OF VEHICLES IN TRAFFIC

6 | Page

Figure 2. Experiment I High-Level Design

10 sample traffic video clips from the same location (a section of Kuala Lumpur to

Kepong Highway route) for 10 different time of the day is used for this experiment. The
file name and time it was recorded is listed on Table 1. Only vehicles flow on one direction
was considered for the counting. A python script was developed on Jupyter Notebook to
execute the experiment pipeline using Tensorflow framework.

Table 1. Details of Video Files Used in Experiment I

 Video File Time

1. P171003_060111_060614 6 a.m.

2. P171003_083611_084112 8 a.m.

3. P171003_101111_101611 10 a.m.

4. P171003_110611_111111 11 a.m.

5. P171003_123111_123612 12 p.m.

6. P171003_132111_132611 1 p.m.

7. P171003_140612_141112 2 p.m.

8. P171003_160322_160822 4 p.m.

9. P171003_190735_191235 7 p.m.

10. P171003_214027_214528 9 p.m.

As for the tracking a simple method was developed to aid the counting process. In
the process of detection and counting, the video clips are converted to frames and each
frame are run through the detection and the output of the detection are bounding boxes
with coordinates and object class. These bounding box coordinates can be used to
determine the center point of each object and in this case vehicles. Assuming the first two
frames of a video clip is depicted by the frames in the Figure 3.

Cop
yri

gh
t@

FTSM

A COMPARITIVE STUDY OF CONVOLUTIONAL NEURAL NETWORK MODELS FOR DETECTION,
CLASSIFICATION AND COUNTING OF VEHICLES IN TRAFFIC

7 | Page

Figure 3. Two Consequent Frames Example

Assume two cars are appearing in consecutive frames and obviously in different
positions given by the coordinates (𝑚1, 𝑛1), 𝑎𝑛𝑑 (𝑚2, 𝑛2) for one car and coordinates
(𝑥1, 𝑦1) 𝑎𝑛𝑑 (𝑥2, 𝑦2) for another. A reference line has been defined for all frames which will
be used to determine if a car has passed or not in order to be counted in the vehicle
counter.

Let’s take frame #1 first at current time 𝑡0 . The output from the detector gives
two cars detected at coordinates as shown on the figure. So, an array is used to store these
values as follows:

𝐽𝑚 = [(𝑚1, 𝑛1, 𝑐𝑎𝑟), (𝑥1, 𝑦1, 𝑐𝑎𝑟)]

Since there were no frames previously (also considering this frame to be the first)
no tracking can be done yet. So, the next frame is taken.
The output from the detector will be place in array 𝐽𝑚 replacing the previous values.

𝐽𝑚 = [(𝑚2, 𝑛2, 𝑐𝑎𝑟), (𝑥2, 𝑦2, 𝑐𝑎𝑟)]

Meanwhile the values from previous frame is copied into another array 𝐽𝑚−1
(indicating previous m-1 frame):

𝐽𝑚−1 = [(𝑚1, 𝑛1, 𝑐𝑎𝑟), (𝑥1, 𝑦1, 𝑐𝑎𝑟)]

Since there are values on both arrays 𝐽𝑚−1 and 𝐽𝑚, that means there are vehicles to
be tracked. Euclidean distances (ED) are calculated between items in both arrays which
will yield the result below:

𝐽𝑑𝑖𝑠𝑡 = [𝐸𝐷(𝑚1𝑛1,𝑚2𝑛2), 𝐸𝐷(𝑚1𝑛1,𝑥2𝑦2), 𝐸𝐷(𝑥1𝑦1,𝑚2𝑛2), 𝐸𝐷(𝑥1𝑦1,𝑥2𝑦2)]

The minimum distance for each point in frame #2 is determined to obtain the

nearest pair from frame #1. This will result in pairs as shown in the Figure 4 and virtual
line can be drawn between these pairs.

Cop
yri

gh
t@

FTSM

A COMPARITIVE STUDY OF CONVOLUTIONAL NEURAL NETWORK MODELS FOR DETECTION,
CLASSIFICATION AND COUNTING OF VEHICLES IN TRAFFIC

8 | Page

Figure 4. All Coordinates from Frame #1 and Frame #2

These virtual lines are checked if it has crossed the reference line. Assuming the

reference line is at 𝑦 = 𝑦𝑟𝑒𝑓 then if 𝑦1 > 𝑦𝑟𝑒𝑓 > 𝑦2 then the virtual line can be said to have

crossed the reference line. In such case, the vehicle will be counted as one in the counter:

𝑝𝑒𝑟𝑠𝑜𝑛 = 0, 𝑏𝑖𝑐𝑦𝑐𝑙𝑒 = 0, 𝒄𝒂𝒓 = 𝟏, 𝑚𝑜𝑡𝑜𝑟𝑐𝑦𝑐𝑙𝑒 = 0, 𝑏𝑢𝑠 = 0, 𝑡𝑟𝑢𝑐𝑘 = 0

The process is repeated for next frame where 𝐽𝑚−1 will be populated with points
from frame #2 and 𝐽𝑚 by points from frame #3.
This technique assumes the vehicle movement is on one direction with no occlusion.

The results of Experiment I is then averaged for each model and compared with ground
truth result which was obtained by manual human counting.

B. Transfer Learning

The best model from Experiment I is YOLOv3 DarkNet19. Detailed result is presented
on the next section. However, it was found that the performance of this model was worse
in poor illumination or night video clips. To improve its performance, a re-training with
annotated images was done. Figure 5 depicts the high-level procedures that were involved
in setting up and executing the re-training.

Figure 5. Re-Training Process Flow

Cop
yri

gh
t@

FTSM

A COMPARITIVE STUDY OF CONVOLUTIONAL NEURAL NETWORK MODELS FOR DETECTION,
CLASSIFICATION AND COUNTING OF VEHICLES IN TRAFFIC

9 | Page

The re-training is done using custom dataset. The process inside the dashed line box (in
figure above) are the dataset preparation flow. Firstly, the video files (.avi) are converted
to frames which is basically are frames (.jpg). Using the YOLO Annotation Tool (Manivanan
Murugavel, 2018) which is a Python executable program, the images of the vehicles are
annotated and labelled. Bounding boxes are drawn on images of vehicles on video frames
and labelled accordingly. Figure 6 shows the GUI (Graphic User Interface) of YOLO
Annotation Tool.

Figure 6. YOLO Annotation Tool GUI

The input of the Image Dir text box is the folder name containing all the frames.

Pressing the Load button will load the first frame and these frames can be scrolled using
“<<Prev” and “>>Next” buttons at the bottom of the GUI. For each frame, bounding boxes
can be drawn on the vehicles using the cursor and labelled by selecting the option of the
dropdown menu on top right of the GUI below the “Load” button. The output of the YOLO
Annotation Tool is a set of Annotation files (.txt) which contains the bounding box
coordinates as well as the class for each annotated vehicle in a frame. One text file is
created for each image. All the images and text files need to be placed in one folder and
the path given in obj.data file. In this research about 510 images from poorly illuminated
video samples were used. Breakdown of total annotated vehicles are: bicycle 0, car 1866,
motorcycle 457, bus 53 and truck 74.

Three additional files are required to perform the re-training. The files are obj.names

which contains the classes that need to be trained, obj.data which has the pointers towards
the location of the annotation files and images and finally the tiny-yolo.cfg file which is
the model configuration file. The DarkNet Detector Train command then can be executed
on the DarkNet framework to run the re-training process. The output of this process will
be weight files for each 100th iteration. The final weight file that is produced when average
loss ratio has saturated will be used for the Experiment II.

C. Experiment II

Cop
yri

gh
t@

FTSM

A COMPARITIVE STUDY OF CONVOLUTIONAL NEURAL NETWORK MODELS FOR DETECTION,
CLASSIFICATION AND COUNTING OF VEHICLES IN TRAFFIC

10 | Page

The framework of Experiment II is similar as Experiment I with only difference is on the
model and the video clips that were used for the evaluation as shown on Figure 6.

Figure 7. Experiment II High-Level Design

Two video clips were used one which is taken at early morning (6 a.m.) and another

at night (9 p.m.). The results from this trained YOLOv3 model is compared with the result
from Experiment I corresponding to the same video clip samples.

IV.FINDINGS AND ARGUMENT

A. Experiment I

Table 2. Experiment I Results

Model Counting Accuracy

 (%)

 Processing Time

 (sec per frame)

Average Std. Dev. Average Std. Dev.

1. YOLOv3

DarkNet19

66.29 33.35 0.264 0.013

2. Faster RCNN

ResNet101

38.12 26.26 0.532 0.037

3. SSD Inception 14.53 14.40 0.135 0.004

Experiment I resulted in YOLOv3 DarkNet19 as the architecture with the highest average
counting accuracy for 10 sample videos tested as shown on Table 2. YOLOv3 DarkNet19
achieved 66.29 % on average compared to Faster RCNN ResNet101 which was second best at

Cop
yri

gh
t@

FTSM

A COMPARITIVE STUDY OF CONVOLUTIONAL NEURAL NETWORK MODELS FOR DETECTION,
CLASSIFICATION AND COUNTING OF VEHICLES IN TRAFFIC

11 | Page

38.12%. SSD Inception on the other hand recorded the fasters processing time of 0.135
seconds per frame but was the lowest in accuracy. The high standard deviation of the
YOLOv3 DarkNet19 is due to huge spread of average accuracy between samples at poor
illumination and day time. As shown on the line chart of Figure 7, YOLOv3 DarkNet19
achieves very high accuracy during daytime (10 a.m. to 2 p.m.) but at early morning (6
a.m.) and night (9 p.m.) the accuracy is very low which is similar to other models.

Figure 8. Counting Accuracy of 3 Models for Each Video Files

The overfitting of the pre-trained models as mentioned by Dey et al., (2019) can be seen
appearing in all three models tested here. The comparison between Ground Truth (actual
count of vehicles done manually) and all three models shows that in poor lighting conditions
less than 10 vehicles were counted as shown on Table 3.

Table 3. Vehicle Count Per Model and Ground Truth For Each Video File

Video Time Ground Truth YOLOv3

DarkNet19

Faster

RCNN

ResNet101

SSD

Inception

v2

6 a.m. 140 4 1 0

8 a.m. 453 334 105 51

10 a.m. 262 247 161 47

11 a.m. 280 235 146 24

12 p.m. 299 288 86 31

1 p.m. 266 239 80 34

2 p.m. 322 279 265 131

4 p.m. 358 265 254 149

7 p.m. 237 137 69 5

9 p.m. 202 7 5 0

B. Experiment II

As explained earlier, transfer learning (weigh initialization method) was executed
to re-train Yolov3 DarkNet53 model with images of vehicles of poor lighting to improve its
detection and hence the counting accuracy of the overall system.The result of the

Cop
yri

gh
t@

FTSM

A COMPARITIVE STUDY OF CONVOLUTIONAL NEURAL NETWORK MODELS FOR DETECTION,
CLASSIFICATION AND COUNTING OF VEHICLES IN TRAFFIC

12 | Page

comparison shows that the counting accuracy has improved very significantly to more than
75% which is due to the model’s ability to detect more vehicles in the dark environment.
The line chart on Figure 8 shows this improvement.

Figure 9. Experiment II Result

V.CONCLUSION
This paper has addressed the challenges in selection of best model for development

of a vehicle counting system for a custom dataset. Comparison of three models (SSD
Inception V2, YOLOv3 DarkNet19 and Faster RCNN ResNet101) which were pre-trained on
COCO dataset showed YOLOv3 DarkNet19 achieving the best result. The results presented
can be used as reference for future development of a similar counting system. However,
the problem of overfitting (to pre-training COCO dataset) was obvious in video samples
which were recorded in dark environment. The solution is to re-train the model with custom
dataset from the dark environment using weight initialization method. The resulting model
improves the counting accuracy very significantly. A tracking mechanism based on
consecutive frames comparison was also proposed to aid the counting system. This
mechanism may work only on vehicles moving on one direction without occlusion.

The limitation faced in the experiments is the availability of models on the same

framework (Tensorflow). TensorNets (Tae Hoon Lee, 2018) library was used in Experiment
I to provide Yolo and DarkNet architecture. Only YOLOv3 DarkNet 19 was available in the
TensorNets’ repository during that time even though DarkNet53 was the latest detector.
But for re-training the latest available DarkNet53 architecture was used. In future studies
perhaps some uniformity can be done on the meta -architectures and detectors. Besides,
the model used for re-training was a light-weighted version of YOLO which is called tiny-
YOLO. This is due to limitation on the available hardware specification. To re-train YOLO
the recommended minimum GPU memory is 4GB, any specification below that is only
suitable for training tiny-YOLO (Manivannan Murugavel, 2018). Thus, it is recommended
that future studies to consider the retraining of YOLO instead of tiny-YOLO to compare the
performances.

Cop
yri

gh
t@

FTSM

A COMPARITIVE STUDY OF CONVOLUTIONAL NEURAL NETWORK MODELS FOR DETECTION,
CLASSIFICATION AND COUNTING OF VEHICLES IN TRAFFIC

13 | Page

Acknowledgement

This work has been supported by the Malaysia’s Ministry of Higher Education Fundamental
Research Grant FRGS/1/2019/ICT02/UKM/02/8.

REFERENCES

Aghdam, Hamed & Heravi, Elnaz. (2017). Guide to Convolutional Neural Networks: A

Practical Application to Traffic-Sign Detection and Classification, Springer
10.1007/978-3-319-57550-6.

Ammour, Nassim & Alhichri, Haikel & Bazi, Yakoub & Benjdira, Bilel & Alajlan, Naif & Zuair,
Mansour. (2017). Deep Learning Approach for Car Detection in UAV Imagery, Remote
Sensing. 9. 1-15. 10.3390/rs9040312.

Arcos-García, Álvaro & Alvarez-Garcia, Juan & Soria Morillo, Luis. (2018). Evaluation of Deep
Neural Networks for traffic sign detection systems, Neurocomputing. 316.
10.1016/j.neucom.2018.08.009.

Arinaldi, Ahmad & Pradana, Jaka & Gurusinga, Arlan. (2018). Detection and classification of
vehicles for traffic video analytics, Procedia Computer Science. 144, 259-268.
10.1016/j.procs.2018.10.527

Chuanqi Tan and Fuchun Sun and Tao Kong and Wenchang Zhang and Chao Yang and
Chunfang Liu. (2018). A Survey on Deep Transfer Learning,Lecture Notes in Computer
Science, 270–279, Springer International Publishing, 10.1007/978-3-030-01424-7_27

Dey, Bhaskar & Kundu, Malay. (2019). Turning Video data into Traffic data: An Application
to Urban Intersection Analysis Using Transfer learning, IET Image Processing 13. 673-
679. 10.1049/iet-ipr.2018.5985

Du, Juan. (2018). Understanding of Object Detection Based on CNN Family and YOLO,
Journal of Physics: Conference Series. 1004. 012029. 10.1088/1742-
6596/1004/1/012029

Hardjono Benny, Tjahyadi Hendra, Gracio, Mario, Widjaja Andree, Kondorura, Roberto,
Halim and Andrew. (2018). Vehicle Counting Quantitative Comparison Using
Background Subtraction, Viola Jones and Deep Learning Methods, IEEE 9th Annual
Information Technology, Electronics and Mobile Communication Conference
(IEMCON)

Jason Brownlee. (2019). Deep Learning for Computer Vision: Image Classification, Object
Detection, and Face Recognition in Python, Machine Learning Mastery

Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza Fathi,
Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, Kevin Murphy. (2016).
Speed/accuracy trade-offs for modern convolutional object detectors,
arXiv:1611.10012

Joseph Redmon and Santosh Divvala and Ross Girshick and Ali Farhadi. (2015). You Only Look
Once: Unified, Real-Time Object Detection, arXiv:1506.02640v5

Kashyap, Ramgopal, Kumar, A.V. Senthil. (2019). Challenges and Applications for
Implementing Machine Learning in Computer Vision, Advances in Computer and
Electrical Engineering, ISBN:9781799801825, IGI Global

Cop
yri

gh
t@

FTSM

A COMPARITIVE STUDY OF CONVOLUTIONAL NEURAL NETWORK MODELS FOR DETECTION,
CLASSIFICATION AND COUNTING OF VEHICLES IN TRAFFIC

14 | Page

Manivannan Murugavel. (23 Jun 2018). How to train YOLOv3 to detect custom objects,
https://medium.com/@manivannan_data/how-to-train-yolov3-to-detect-custom-
objects-ccbcafeb13d2

Manivanan Murugavel. (14 Dec 2018). YOLO Annotation Tool,
https://github.com/ManivannanMurugavel/YOLO-Annotation-Tool

Pan, S.J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge
and Data Engineering, 22, 1345-1359.

Singh Chauhan, Mayank & Singh, Arshdeep & Khemka, Mansi & Prateek, Arneish & Sen,
Rijurekha. (2019). Embedded CNN based vehicle classification and counting in non-
laned road traffic, arXiv:1901.06358

Tensorflow detection model zoo. (2019).
https://github.com/tensorflow/models/blob/master/research/object_detection/g
3doc/detection_model_zoo.md

Tae Hoon Lee. (2018). TensorNets, https://github.com/taehoonlee/tensornets

Yadav, Nikhil and Utkarsh Binay. (2017). Comparative Study of Object Detection Algorithms,
IRJET Volume 4- Issue 11 - November 2017

Zheng, PJ & Mike, McDonad. (2012). An Investigation on the Manual Traffic Count Accuracy,
Procedia - Social and Behavioral Sciences. 43. 226–231.
10.1016/j.sbspro.2012.04.095.

Zhao, Zhong-Qiu & Zheng, Peng & Xu, Shou-Tao & Wu, Xindong. (2019). Object Detection
With Deep Learning: A Review, IEEE Transactions on Neural Networks and Learning
Systems. PP. 1-21. 10.1109/TNNLS.2018.2876865

Cop
yri

gh
t@

FTSM

https://medium.com/@manivannan_data/how-to-train-yolov3-to-detect-custom-objects-ccbcafeb13d2
https://medium.com/@manivannan_data/how-to-train-yolov3-to-detect-custom-objects-ccbcafeb13d2
https://github.com/ManivannanMurugavel/YOLO-Annotation-Tool
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/taehoonlee/tensornets

