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 Abstract: Deep Learning based networks especially Convolutional Neural Network (CNN) models are widely used in vehicle 
detection, classification and counting system. On the other hand, transfer learning is a process of re-using a trained model 
to solve a problem similar to the one it was trained. Two ways of implementing transfer learning are direct usage of a model 
as a classifier and usage of a pre-trained model as a weight initialization for training with a new dataset. With recent 
development in the field of deep learning, many CNN models and architectures are available which makes the selection of a 
suitable model for performing vehicle detection, classification and counting a big challenge. Besides that, a tracking method 
is also required to track the vehicles in the video sequences so that the counting can be done as accurate as possible. In this 
project three types of CNN models i.e. SSD Inception, Faster R-CNN ResNet and Yolo DarkNet were tested on 10 traffic video 
samples using transfer learning methods (classifier). Those three models were selected for comparison based on the 
popularity and availability of many research studies in recent time. The models were compared based on number of vehicles 
detected, accuracy and processing time. A simple vehicle tracking method was also developed to aid the counting process. 
Results showed that Yolo DarkNet was the best performing model with an average accuracy of 66.29 % and average processing 
time of 0.264 seconds per-frame. It also achieved the highest accuracy of 96.32% in bright conditions. SSD Inception was the 
fastest at 0.135 seconds per-frame but the average accuracy was lowest at 14.53%. However, all three models performed 
poorly in low light conditions where Yolo DarkNet performed between 2.8% to 3.5% accuracy. To overcome this problem, 
another method of transfer learning (weight initialization) was used to re-train the Yolo DarkNet model with annotated 

images from low light traffic videos. The re-trained model achieved a maximum of 76.73% in accuracy in low light scenario. 

 
Keywords: CNN, Transfer Learning, Deep Learning, Vehicle Detection 

 
I.INTRODUCTION 

Rapid increase of road traffic density in major cities has raised the need for 
automated vehicle monitoring system specifically for traffic measurements and forecasting 
purposes. Generated statistics are used in road infrastructure planning, such as road 
widening, traffic intersection and fly-overs construction, foot bridges, underpasses, 
pedestrian paths building and adding motorcycle lanes. 

 
In earlier days before the rise of machine learning, the vehicle counting was done 

manually. Counting was done by a person standing by the road side; using an electronic 
device to record the data using a tally sheet. In some cases, the person may do the counting 
by observing video footage captured by citycams or CCTVs placed above the road or 
highway.  According to a study by Zheng et al. (2012), manual vehicle calculation is 99% 
accurate. This investigation is based on a manual calculation of the vehicle from a 5 
minutes video recording. It was found that calculation errors are usually less than 1% while 
classification errors are more prominent, with an average of 4% to 5% error rate. Although 
manual method provides high accuracy, it requires huge amount of man power. Therefore, 
manual calculations are usually performed with only a small sample of data and the results 
are extrapolated for the whole year or season for long-term forecasts. Recent advancement 
in the field of computer vision have enabled the development of automated vehicle 
counting systems with the similar accuracy as human calculations. It can also be used for 
continuous monitoring and counting over time with less human intervention. Computer 
vision-based vehicle calculation methods have several advantages over manual or other 
automated calculation methods.  

 
Two important advantages are cost and flexibility. This method is cost effective as 

it can count many instances at once or parallelly which means only one camera is required 
for multiple lanes or intersections. Secondly is flexibility. It is flexible to add or change 
areas where vehicles need to be counted by using filters to determine lanes or paths that 
need to be counted. 
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In general, the process of calculating vehicles based on computer vision can be 

divided into three stages: vehicle detection, tracking and counting. The first step, 
detection of vehicles can be accomplished with either Traditional Method or Deep Learning 
method. Traditional object detection methods are built on handcrafted features with 
shallow design that can be trained. However, when complex features are constructed with 
a combination of low-level image features and high-level contexts of object detection and 
scene classification, traditional model performance will stall (Zhao et al., 2019). Some of 
the most commonly used handcrafted methods are Background Subtraction, Optical Flow, 
SIFT (Scale Invariant Features Transform) and HOG (Histogram of Oriented Gradients). On 
the other hand, Deep Learning techniques learn categories gradually through the hidden 
layers in its architecture. For example, in face image recognition, it starts with a low level 
to identify bright and dark areas, then recognizes lines and shapes for facial recognition. 
Each neuron or node in the network represents one feature or aspect and together they 
give a full representation of the image. Each hidden node or layer is represented by a 
weight value that will influence the outcome (output) and this value can be changed during 
the learning process. In traditional method, many of the features used should be identified 
to reduce data complexity and simplify the learning process of algorithms with a clearer 
pattern. The advantage of the deep learning method is that it tries to learn the high-level 
features of the data in stages, so the extraction of the features does not need to be 
encoded. For an example in case of multiple object detection problems, deep learning 
techniques such as YOLO (You Only Look Once) (Joseph et al., 2015) capture images as 
inputs and provide the location and name of objects on output. But in traditional method 
that uses algorithms like SVM, a bounding box object detection algorithm is required first 
to identify all possible objects to have the HOG as input to the learning algorithm in order 
to recognize relevant objects. (Kashyap et al., 2019) 

 
Deep learning has its own disadvantage too. The problem with deep learning is the 

reliance on large training datasets for networks to learn patterns in data (Chuanqi Tan et 
al., 2018). Therefore, a large dataset needed if a deep learning network needs to be trained 
from the scratch which is costly and time consuming (Pan et al., 2010). To overcome this 
problem, transfer learning may be used. Transfer learning is method to make use of the 
knowledge gained while solving one problem and applying it to a different but related 
problem. For example, knowledge gained while learning to recognize cars can be used to 
some extent to recognize trucks. This method saves training time and requires only a small 
amount of training data compared to training the model to recognize truck from the 
beginning. There are four ways to reuse a trained model (Jason Brownlee, 2019): as a 
classifier, standalone feature extractor, integrated feature extractor or used for weight 
initialization. With recent rapid innovations in architecture and training of convolutional 
Neural Networks, there are many pre-trained models made available on public domain with 
a permissive license for general use. These CNN models can be used by means of transfer 
learning (classifiers) to implement the vehicle detection. 

 
 The general availability of many pre-trained deep learning models might 

ease the implementation of an automated vehicle counting system, but the main challenge 
is to identify the best pre-trained models that can fit to a given custom dataset. The direct 
comparisons between them are difficult due to different base feature extractors, different 
default image resolutions and different hardware and software platforms that maybe used 
to develop the system. Each model may have its own advantages and disadvantages.  

 
Some studies have been done to compare various available CNN models as detector 

in general such as Huang et. al (2016), Alvaro Arcos-Garc'ıa et. al. (2018), and Nikhil et al. 
(2017) to name few. There are also studies specifically on using deep learning models for 
vehicle counting systems such as Arinaldi et al. (2018), Singh Chauhan, Mayank et. al. (2019) 
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and Dey Bhaskar et al., (2019). Each study has varying results which highlights the strengths 
and weaknesses of each pretrained models. It seems the performance of models are greatly 
associated with the local dataset and the characteristics of the vehicle movement. Thus, 
there is no one CNN model that fits all situation as to provide the optimal detection result. 

 
The next step after vehicle detection is the tracking phase. Tracking is important 

to identify the same vehicles that appear on consecutive frames as not to be counted more 
than once during the counting phase. An efficient method to track the vehicle need to be 
constructed. Finally, the selected model must be improved. This is necessary because the 
models used to develop the counting system is pre-trained with generally available datasets 
such as COCO dataset, ImageNet dataset or VOC dataset. This may cause the models to 
overfit and perform poorly in certain conditions mainly on poor lighting situations as 
mentioned by Dey Bhaskar et al., (2019). 

 
This paper will address three main issues in construction of an effective vehicle 

counting system. Firstly, the selection of the best model to be use on the local custom 
dataset must be determined by means of comparison between few shortlisted models. Next 
is to address the vehicle tracking method to aid the counting mechanism and finally 
improvising the performance of the selected model to overcome the overfitting problem 
due to dataset used to pre-train the model. The improvisation is done using weight 
initialization method as mentioned by Jason Brown Lee (2019). 

 
II.RELATED WORK  

One of the biggest challenges in the field of applied Convolutional Neural Network 
is to identify the best architecture for implementation. The best CNN architecture must 
be able to provide the best results by accuracy and use efficient computation technics 
(Aghdam et al., 2017). This is because the accuracy metrics such as the mean Average 
Precision (mAP) might not provide a holistic picture. Other important metrices such as 
execution time and memory usage must be considered as well. Many researches are done 
to ease this selection by providing comparative studies on various CNN architectures. 

 
In one study by Jonathan Huang et al., (2016), a comparison is presented on 

different combinations of meta-architectures (Faster R-CNN, R-FCN and SSD) with feature 
extractors (Inception Resnet V2, inception v2, Inception v3, MobileNet, ResNet101 and 
VGG). They used a high-end hardware with 32GB RAM, Intel Xeon E5-1650 v2 processor and 
a Nvidia GeForce GTX Titan X GPU card. Timings were reported on GPU for a batch size of 
one. The detection pipeline for all models (SSD, Faster R-CNN and R-FCN meta-
architectures) were constructed on Tensorflow platform. This allows easy swapping of 
feature extractor architectures, loss functions. It also allows for easy portability to various 
other platforms for deployment. The performance of the models varies in terms of 
detection accuracy, GPU utilization time and memory utilization. The study also identified 
sweet spots on the accuracy/speed trade-off curve where gains in accuracy are only possible 
by sacrificing speed. Two CNN architecture that fit into such sweet spot was R-CNN with 
ResNet101 and R-FCN with ResNet 101. 

 
Yadav et al., (2017) present a comparative study of CNN models using deep learning 

library of Tensorflow due its portability and ease of use. They used the COCO dataset for 
evaluation. The hardware used was Nvidia Titan X GPU card, on a 32 GB RAM device with 
Intel Xeon E5-1650 v2 processor. The images were resized, and the dimensions were either 
300X300 or 600X600 pixels. The timings were averaged for 450 images. In this study, they 
found that SSD and R-FCN models are faster in processing compared to other CNN models. 
Meanwhile Faster R CNN was the slowest in detection where it took 100ms to process each 
image. But it was the one with highest accuracy. 
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Arcos-Garc'ıa et al., (2018) presented another comparison which was among 

combinations of four meta-architectures ((Faster R-CNN, R-FCN, SSD, dan YOLOv2) and six 
different extractors (Resnet V1 50, Resnet V1 101, Inception V2, Inception Resnet V2, 
Mobilenet V1, dan Darknet19). The experiments were using dataset which consists of street 
signboards. The study concluded Faster R-CNN Inception ReNet v2 as the best mAP. Yolov2 
came second and R-FCN ResNet 101 was mentioned as a balanced architecture between 
accuracy and execution time. The advantages of Yolov2 against other models was stressed 
by Du (2018). In his research, he mentioned Yolov2 achieving 76.8mAP at 67FPS and 78.6 
mAP at 40 FPS beating other models based on Faster RCNN and ResNet. 

 
With the availability of pre-trained models, recently there has been many research 

and studies to compare the performance of deep learning methods and handcrafted 
methods for vehicle detection and counting systems as well. A study by Hardjono et al., 
(2018) presents a comparative investigation of vehicle counting using various machine 
learning methods and specifically compares handcrafted method with deep learning 
method. The comparison was done between Background subtraction, Viola Jones and Yolo 
using four datasets which were taken from existing CCTV image data. Quantitative 
evaluation, F1 and precision scores were obtained. Based on experiments, F1 scores for 
vehicle counting ranging from 0.32 to 0.75 have been successfully obtained for one low 
resolution dataset by using Background Subtraction and Viola Jones methods. This study 
also mentioned that Viola Jones method can improve F1 score, by about 39% to 56%, over 
Back Subtraction method. However, the use of YOLO yielded even better results, with F1 
scores ranging from 0.94 to 1 and its precision ranges from 97.37% to 100%. 

 
Another study by Arinaldi et al., (2018) concluded that the Faster RCNN is more 

suitable for the problem of detection and classification of vehicles in a dynamic traffic 
scene with moving vehicles. In this paper, a comparison of performance was done on system 
based on MoG background subtraction with SVM classifier and a system based on the Faster 
RCNN. A set of annotated images with six class labels were used to train the Faster RCNN 
model. The results of the experiments show that MOG with linear SVM produce highest 
counting accuracy of 59.1% and Faster R-CNN achieving 69.4%.  It is also found that 
detection and classification of vehicles for night time data poses a challenge for the MoG 
background subtraction. This is mainly due to bright lights and various reflections on the 
traffic scene. On the other hand, Faster RCNN does not show such problem because it was 
trained to detect vehicles based on appearances and not based on the changes in pixel value 
which is sensitive to lighting and shadows. 

 
While most of the vehicle counting research are based on cctv video footages, there 

are also studies on car detection and counting using UAVs (Unmanned Aerial Vehicles). One 
such research by Ammour et al., (2017) suggests a deep convolutional neural network (CNN) 
system that is already pre-trained on huge auxiliary data as a feature extraction tool, 
combined with a linear support vector machine (SVM) classifier to classify regions into “car” 
and “no-car” classes. The experimental results on five UAV images show that the proposed 
method outperformed handcraft methods, both in terms of counting accuracy (as high as 
90%) and computational time (from hours to minutes). 

 
A previous study on implementation of transfer learning has shown that the pre-

trained classifiers can be improved by re-training the model with new annotated images 
(weight initialization method for transfer learning). Singh et al., (2019) presented a study 
on usage of trained Yolo models on vehicle counting. YOLO models which is pre-trained on 
the MS-COCO dataset was used. The researchers did a transfer learning by re-training it on 
the PASCAL VOC 2007 and the KITTI datasets. This is followed by another round of training 
using custom annotated datasets.  Five different YOLO models were generated by such fine 
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tuning, each model using exclusively the training data from a single camera installation. 
For four installations, this yields four YOLO models. The fifth model is a combination of 
the training data from all installations. Around 75% MAP was achieved on an 80-20 train-
test split using 5562 videoframes from four different locations. 

 
Another research was on vehicle counting using transfer learning techniques on 

MobileNet models by Dey et al., (2019). A MobileNet model which was pre-trained on the 
ImageNet dataset with size of 224×224 pixels were adopted. With a limited set of training 
images, the accuracy of vehicle detection was 97.4%. As for traffic volume estimates 
(counting accuracy) at the intersections, it was 78%. There were two important highlights 
in this study. Firstly, the performance was bad in case of highly overlapping of vehicles 
(occlusion). Secondly, the detection results at night or under very low-illumination 
conditions are also poor. The author suggested that the overall performance and speed of 
computation, could be improved by using a GPU-based multi-scale vehicle segmentation 
technique with an analysis of each vehicle for their direction.  

 
 

III.METHODS  
 
The high-level methodology of this research is presented by Figure 1. 
 
 

 
Figure 1. Research Framework 

 
Three stages for the execution of the research. Firstly, the experiment to compare 

3 CNN Models which are shortlisted and benchmarking. The best model is selected to be re-
trained to improve the performance (on poor illumination) and overcome the overfitting 
problem. Finally experiment II to compare the performance of the re-trained model with 
the pre-trained model. 

 
A. Experiment I 
 

Three CNN models are shortlisted based on the past studies, availability of pre-trained 
models and ease of implementation on Tensorlow framework. The model are: 
 
1. SSD Inception V2 
2. Faster RCNN ResNet101 
3. YOLOv3 Darknet19 
 

All the pre-trained models are trained on COCO dataset and available on the  
Tensorflow detection model zoo (2019) and TensorNets (Tae Hoon Lee, 2018). The overall 
design of this experiment is depicted by Figure 2: 

Cop
yri

gh
t@

FTSM



A COMPARITIVE STUDY OF CONVOLUTIONAL NEURAL NETWORK MODELS FOR DETECTION, 
CLASSIFICATION AND COUNTING OF VEHICLES IN TRAFFIC  

 

6 | Page 

 

 
Figure 2. Experiment I High-Level Design 

 
10 sample traffic video clips from the same location (a section of Kuala Lumpur to 

Kepong Highway route) for 10 different time of the day is used for this experiment. The 
file name and time it was recorded is listed on Table 1. Only vehicles flow on one direction 
was considered for the counting. A python script was developed on Jupyter Notebook to 
execute the experiment pipeline using Tensorflow framework.  

 
Table 1. Details of Video Files Used in Experiment I 

 Video File Time 

1. P171003_060111_060614 6 a.m. 

2. P171003_083611_084112 8 a.m. 

3. P171003_101111_101611 10 a.m. 

4. P171003_110611_111111 11 a.m. 

5. P171003_123111_123612 12 p.m. 

6. P171003_132111_132611 1 p.m. 

7. P171003_140612_141112 2 p.m. 

8. P171003_160322_160822 4 p.m. 

9. P171003_190735_191235 7 p.m. 

10. P171003_214027_214528 9 p.m. 

   

 
 

As for the tracking a simple method was developed to aid the counting process. In 
the process of detection and counting, the video clips are converted to frames and each 
frame are run through the detection and the output of the detection are bounding boxes 
with coordinates and object class. These bounding box coordinates can be used to 
determine the center point of each object and in this case vehicles. Assuming the first two 
frames of a video clip is depicted by the frames in the Figure 3. 
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Figure 3. Two Consequent Frames Example 

 
 

Assume two cars are appearing in consecutive frames and obviously in different 
positions given by the coordinates (𝑚1, 𝑛1), 𝑎𝑛𝑑 (𝑚2, 𝑛2) for one car and coordinates 
(𝑥1, 𝑦1) 𝑎𝑛𝑑 (𝑥2, 𝑦2) for another. A reference line has been defined for all frames which will 
be used to determine if a car has passed or not in order to be counted in the vehicle 
counter. 
 

Let’s take frame #1 first at current time 𝑡0 . The output from the detector gives 
two cars detected at coordinates as shown on the figure. So, an array is used to store these 
values as follows: 
 

𝐽𝑚 = [(𝑚1, 𝑛1,  𝑐𝑎𝑟),  (𝑥1, 𝑦1,  𝑐𝑎𝑟)] 

Since there were no frames previously (also considering this frame to be the first) 
no tracking can be done yet. So, the next frame is taken. 
The output from the detector will be place in array 𝐽𝑚 replacing the previous values. 
 

𝐽𝑚 = [(𝑚2, 𝑛2,  𝑐𝑎𝑟),  (𝑥2, 𝑦2,  𝑐𝑎𝑟)] 
 

Meanwhile the values from previous frame is copied into another array 𝐽𝑚−1  
(indicating previous m-1 frame): 

𝐽𝑚−1 = [(𝑚1, 𝑛1,  𝑐𝑎𝑟),  (𝑥1, 𝑦1,  𝑐𝑎𝑟)] 
 
 

Since there are values on both arrays 𝐽𝑚−1 and 𝐽𝑚, that means there are vehicles to 
be tracked. Euclidean distances (ED) are calculated between items in both arrays which 
will yield the result below: 

𝐽𝑑𝑖𝑠𝑡 = [𝐸𝐷(𝑚1𝑛1,𝑚2𝑛2),  𝐸𝐷(𝑚1𝑛1,𝑥2𝑦2),  𝐸𝐷(𝑥1𝑦1,𝑚2𝑛2),  𝐸𝐷(𝑥1𝑦1,𝑥2𝑦2)] 

 
The minimum distance for each point in frame #2 is determined to obtain the 

nearest pair from frame #1. This will result in pairs as shown in the Figure 4 and virtual 
line can be drawn between these pairs. 
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Figure 4. All Coordinates from Frame #1 and Frame #2 

 
 

These virtual lines are checked if it has crossed the reference line. Assuming the 

reference line is at 𝑦 = 𝑦𝑟𝑒𝑓 then if 𝑦1 > 𝑦𝑟𝑒𝑓 > 𝑦2 then the virtual line can be said to have 

crossed the reference line. In such case, the vehicle will be counted as one in the counter: 

𝑝𝑒𝑟𝑠𝑜𝑛 = 0,  𝑏𝑖𝑐𝑦𝑐𝑙𝑒 = 0,  𝒄𝒂𝒓 = 𝟏,  𝑚𝑜𝑡𝑜𝑟𝑐𝑦𝑐𝑙𝑒 = 0,  𝑏𝑢𝑠 = 0,  𝑡𝑟𝑢𝑐𝑘 = 0 
 

The process is repeated for next frame where 𝐽𝑚−1  will be populated with points 
from frame #2 and 𝐽𝑚 by points from frame #3. 
This technique assumes the vehicle movement is on one direction with no occlusion. 
 

The results of Experiment I is then averaged for each model and compared with ground 
truth result which was obtained by manual human counting. 
 

 
B. Transfer Learning 

The best model from Experiment I is YOLOv3 DarkNet19. Detailed result is presented 
on the next section. However, it was found that the performance of this model was worse 
in poor illumination or night video clips. To improve its performance, a re-training with 
annotated images was done. Figure 5 depicts the high-level procedures that were involved 
in setting up and executing the re-training. 

 

 
Figure 5. Re-Training Process Flow 
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The re-training is done using custom dataset. The process inside the dashed line box (in 
figure above) are the dataset preparation flow. Firstly, the video files (.avi) are converted 
to frames which is basically are frames (.jpg). Using the YOLO Annotation Tool (Manivanan 
Murugavel, 2018) which is a Python executable program, the images of the vehicles are 
annotated and labelled. Bounding boxes are drawn on images of vehicles on video frames 
and labelled accordingly. Figure 6 shows the GUI (Graphic User Interface) of YOLO 
Annotation Tool. 

 

 
 

Figure 6. YOLO Annotation Tool GUI 
 
 
The input of the Image Dir text box is the folder name containing all the frames. 

Pressing the Load button will load the first frame and these frames can be scrolled using 
“<<Prev” and “>>Next” buttons at the bottom of the GUI. For each frame, bounding boxes 
can be drawn on the vehicles using the cursor and labelled by selecting the option of the 
dropdown menu on top right of the GUI below the “Load” button. The output of the YOLO 
Annotation Tool is a set of Annotation files (.txt) which contains the bounding box 
coordinates as well as the class for each annotated vehicle in a frame. One text file is 
created for each image. All the images and text files need to be placed in one folder and 
the path given in obj.data file. In this research about 510 images from poorly illuminated 
video samples were used. Breakdown of total annotated vehicles are: bicycle 0, car 1866, 
motorcycle 457, bus 53 and truck 74.  

 
Three additional files are required to perform the re-training. The files are obj.names 

which contains the classes that need to be trained, obj.data which has the pointers towards 
the location of the annotation files and images and finally the tiny-yolo.cfg file which is 
the model configuration file. The DarkNet Detector Train command then can be executed 
on the DarkNet framework to run the re-training process. The output of this process will 
be weight files for each 100th iteration. The final weight file that is produced when average 
loss ratio has saturated will be used for the Experiment II. 

 
 
 

C. Experiment II 
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The framework of Experiment II is similar as Experiment I with only difference is on the 
model and the video clips that were used for the evaluation as shown on Figure 6. 

 

 
Figure 7. Experiment II High-Level Design 

 
 
Two video clips were used one which is taken at early morning (6 a.m.) and another 

at night (9 p.m.). The results from this trained YOLOv3 model is compared with the result 
from Experiment I corresponding to the same video clip samples. 

 
 
 
 
 
 
 
 
 
 
 

IV.FINDINGS AND ARGUMENT 
 

A. Experiment I 
 

Table 2. Experiment I Results 
 

Model                 Counting Accuracy 

                       (%) 

        Processing Time 

        (sec per frame) 

Average Std. Dev. Average Std. Dev. 

      

1. YOLOv3 

DarkNet19 

66.29 33.35 0.264 0.013 

      

2. Faster RCNN 

ResNet101 

38.12 26.26 0.532 0.037 

      

3. SSD Inception 14.53 14.40 0.135 0.004 

      

 
 
Experiment I resulted in YOLOv3 DarkNet19 as the architecture with the highest average 
counting accuracy for 10 sample videos tested as shown on Table 2. YOLOv3 DarkNet19 
achieved 66.29 % on average compared to Faster RCNN ResNet101 which was second best at 
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38.12%. SSD Inception on the other hand recorded the fasters processing time of 0.135 
seconds per frame but was the lowest in accuracy. The high standard deviation of the 
YOLOv3 DarkNet19 is due to huge spread of average accuracy between samples at poor 
illumination and day time. As shown on the line chart of Figure 7, YOLOv3 DarkNet19 
achieves very high accuracy during daytime (10 a.m. to 2 p.m.) but at early morning (6 
a.m.) and night (9 p.m.) the accuracy is very low which is similar to other models. 
 

 
Figure 8. Counting Accuracy of 3 Models for Each Video Files 

 
 
The overfitting of the pre-trained models as mentioned by Dey et al., (2019) can be seen 
appearing in all three models tested here. The comparison between Ground Truth (actual 
count of vehicles done manually) and all three models shows that in poor lighting conditions 
less than 10 vehicles were counted as shown on Table 3. 
 

Table 3. Vehicle Count Per Model and Ground Truth For Each Video File 
 

Video Time Ground Truth  YOLOv3 

DarkNet19  

Faster 

RCNN 

ResNet101 

 

SSD 

Inception 

v2  

6 a.m. 140 4 1 0 

8 a.m. 453 334 105 51 

10 a.m. 262 247 161 47 

11 a.m. 280 235 146 24 

12 p.m. 299 288 86 31 

1 p.m. 266 239 80 34 

2 p.m. 322 279 265 131 

4 p.m. 358 265 254 149 

7 p.m. 237 137 69 5 

9 p.m. 202 7 5 0 

 
 
B. Experiment II 

As explained earlier, transfer learning (weigh initialization method) was executed 
to re-train Yolov3 DarkNet53 model with images of vehicles of poor lighting to improve its 
detection and hence the counting accuracy of the overall system.The result of the 
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comparison shows that the counting accuracy has improved very significantly to more than 
75% which is due to the model’s ability to detect more vehicles in the dark environment. 
The line chart on Figure 8 shows this improvement. 

 
 
 

 
Figure 9. Experiment II Result 

 
 

V.CONCLUSION 
This paper has addressed the challenges in selection of best model for development 

of a vehicle counting system for a custom dataset. Comparison of three models (SSD 
Inception V2, YOLOv3 DarkNet19 and Faster RCNN ResNet101) which were pre-trained on 
COCO dataset showed YOLOv3 DarkNet19 achieving the best result. The results presented 
can be used as reference for future development of a similar counting system. However, 
the problem of overfitting (to pre-training COCO dataset) was obvious in video samples 
which were recorded in dark environment. The solution is to re-train the model with custom 
dataset from the dark environment using weight initialization method. The resulting model 
improves the counting accuracy very significantly. A tracking mechanism based on 
consecutive frames comparison was also proposed to aid the counting system. This 
mechanism may work only on vehicles moving on one direction without occlusion. 

 
The limitation faced in the experiments is the availability of models on the same 

framework (Tensorflow). TensorNets (Tae Hoon Lee, 2018) library was used in Experiment 
I to provide Yolo and DarkNet architecture. Only YOLOv3 DarkNet 19 was available in the 
TensorNets’ repository during that time even though DarkNet53 was the latest detector. 
But for re-training the latest available DarkNet53 architecture was used. In future studies 
perhaps some uniformity can be done on the meta -architectures and detectors. Besides, 
the model used for re-training was a light-weighted version of YOLO which is called tiny-
YOLO. This is due to limitation on the available hardware specification. To re-train YOLO 
the recommended minimum GPU memory is 4GB, any specification below that is only 
suitable for training tiny-YOLO (Manivannan Murugavel, 2018). Thus, it is recommended 
that future studies to consider the retraining of YOLO instead of tiny-YOLO to compare the 
performances.  
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