

Abstract—Hyper-heuristic approaches aim to automate

heuristic design in order to solve multiple problems instead of
designing tailor-made methodologies for individual problems.
Hyper-heuristics accomplish this through a high level heuristic
(heuristic selection mechanism and an acceptance criterion).
This automates heuristic selection, deciding whether to accept
or reject the returned solution. The fact that different
problems or even instances, have different landscape
structures and complexity, the design of efficient high level
heuristics can have a dramatic impact on hyper-heuristic
performance. In this work, instead of using human knowledge
to design the high level heuristic, we propose a gene expression
programming algorithm to automatically generate, during the
instance solving process, the high level heuristic of the hyper-
heuristic framework. The generated heuristic takes
information (such as the quality of the generated solution and
the improvement made) from the current problem state as
input and decides which low level heuristic should be selected
and the acceptance or rejection of the resultant solution. The
benefit of this framework is the ability to generate, for each
instance, different high level heuristics during the problem
solving process. Furthermore, in order to maintain solution
diversity, we utilize a memory mechanism which contains a
population of both high quality and diverse solutions that is
updated during the problem solving process. The generality of
the proposed hyper-heuristic is validated against six well
known combinatorial optimization problem, with very
different landscapes, provided by the HyFlex software.
Empirical results comparing the proposed hyper-heuristic
with state of the art hyper-heuristics, conclude that the
proposed hyper-heuristic generalizes well across all domains
and achieves competitive, if not superior, results for several
instances on all domains.

Index Terms— Hyper-heuristics, Gene Expression

Programming, Timetabling, Vehicle Routing, Dynamic
Optimization

Nasser R. Sabar and Masri Ayob are with Data Mining and Optimization
Research Group (DMO), Centre for Artificial Intelligent (CAIT),
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia.
email:naserdolayme@yahoo.com, masri@ftsm.ukm.my.
Graham Kendall and Rong Qu are with the ASAP Research Group,
School of Computer Science, The University of Nottingham, Nottingham

NG8 1BB, UK.email:gxk@cs.nott.ac.uk, rxq@cs.nott.ac.uk. Graham
Kendall is also affiliated with the University of Nottingham Malaysia
Campus, 43500 Semenyih Selangor, Malaysia. Email:
Graham.Kendall@nottingham.edu.my.

I. INTRODUCTION

The growth in the complexity and constraints of
optimization problems that can be found in many real world
applications makes them not only an ongoing challenge but
also implies that they cannot be solved using exact methods
within tractable (or acceptable) computational time [1], [2].
Alternatively, meta-heuristic approaches, which offer no
guarantee of returning an optimal solution (or even near
optimal solutions), becomes not only a suitable option but
also the only available option, as they usually return
reasonably good solutions within a reasonable time.
Although the efficiency of meta-heuristic approaches has
been demonstrated over several real world applications,
their success is due to the use of domain-specific
knowledge [3], [4], [5]. As a consequence, to solve a given
problem by a meta-heuristic algorithm, practitioners usually
have to face the problem of configuring the selected meta-
heuristic such as selecting the appropriate problem specific
structures, most suitable operators and fine tuning the
parameters, which are non-trivial tasks [6], [7] .

Over the years, it has become evident that the decision of
which problem specific structures, operators and parameter
values to be included (or excluded) in a given meta-
heuristic algorithm has an impact on algorithm performance
[3], [8], [9], [10]. Thus, to obtain a good quality solution,
meta-heuristic approaches have to be expertly crafted by
incorporating problem-specific knowledge of the
underlying problem instance [3], [11]. Customization of a
meta-heuristic can be problem or even instance dependent
and consequently will decrease its generality. Moreover,
according to the No Free Lunch Theorem [12] no single
algorithm with a unique configuration is able to perform
well over all problem instances. As a consequence, when
new problems are considered, meta-heuristics need to be
(re)developed, which is usually not only time consuming
but also requires a deep understanding of both algorithm
behavior and the instance structure. Broadly speaking, at
the expense of generality, researchers and practitioners have
concentrated their effort on outperforming existing methods
on one, or a few instances, by tailoring a given algorithm to
the problem at hand.

Arguably, meta-heuristic configuration plays a crucial
role on the algorithm performance [5], [6]. Furthermore,
different problems require different configurations, and
even for different instances of the same problem using a
different configuration during the solving process could

The Automatic Design of Hyper-heuristic Framework
with Gene Expression Programming for Combinatorial

Optimization problems

Nasser R. Sabar, Masri Ayob, Graham Kendall, Senior Member, IEEE and Rong Qu, Member, IEEE

im
be
on
on
tak
pa
ad
he
wa
alg
[7
ac
ac
pa
m
ex
fra
se
alg
su
sy
alg

Hy
se
co
he
ne
he
m
so
is
str
on

Th
he
de
ac
pr
pr
ch
he
he
re
m
de
ab
he
cr
re

he
de
fe
de
de
an
th
aw

mprove algor
ecomes trappe
n the fly, cou
ne way to des
ke advantage
arameter value
djusting them
euristic design
ay in enhanc
gorithm opera

7], [13]. These
cross different
cross several
arameter tuni

memetic algorit
xamples of aut
ameworks in

elf-adaptation
gorithm conf

uch as coadap
ymbiotic evol
gorithms [18]
This work f
yper-heuristic

earch space o
omponents in
euristic. Hype
ew heuristic b
euristics. Thes

meta-heuristic
olution space.

to raise the
rength of seve
ne framework
A traditional

he higher le
euristic to cal
ecides whethe
cceptance crit
roblem specif
roblem doma
haracteristics
euristic compo
euristic perform
search interes

mechanisms or
esign of a go
bility of the
euristic at any
riterion can g
gions [19], [20
Although the

euristic hyper
esigned, one c
w) sensitive

esigned by hu
esigned high l
nd experience,
e overall sea

ware, previous

rithm perform
ed in a local o
ld help the al
sign an effect
 of several o
es by combini
during the so

n has proven t
cing the searc
ators or param
e methodologi
t instances of

problem do
ing [7], rea
thms [9] and m
tomated heuri
the automatic
of search m

figuration thr
pted memeplex
lution [17] a
.

focuses on th
cs are search m
of a given s
n order to
er-heuristics c
by combining
se features dis
methods, as
The key moti

e level of ge
eral heuristics
[3].
hyper-heurist

evel heuristic
ll (heuristic se
er to accept
terion). The l
fic heuristics
ain. Since
and landsca

onents have a
mance and th

st in devolving
r different acc
od high level

hyper-heuris
y particular p

guide the sear
0].
high level he

r-heuristic fra
can argue that
parameters a

uman experts
level heuristic
, and they onl
arch space. Fu
s hyper-heuris

mance [7]. W
optima, adaptin
lgorithm to es
tive search m
operators as w
ing them in o
lving process
to be an effici
ch methodolo

meter values in
ies should wo
f the same p
omains. Hype
active search
multi-method
istic design. R
c heuristic de
methodologies
rough coevolu
xes [16], a th
and the coev

he hyper-heur
methodologies
set of heurist
select the m

can also be u
g basic compo
stinguish hype
they operate

ivation behind
enerality and
s or heuristic

tic framework
c manages w
election mech
t the resultan
lower level c
which are di
each instanc

ape complex
dramatic imp
at is why ther
g either new h
ceptance crite
l heuristic wo
stic in select
point, and a
rch process to

euristic of a he
amework, ha
t most of them
and they have

[19]. In addi
c needs consi
ly represent a
urthermore, a

stic framework

When a sea
ng the algorith
scape. Therefo

methodology is
well as differ

one framework
[13]. Automa

ient and effec
ogy by adjust
n on-line fash

ork well, not o
roblem, but a
er-heuristics

[14], adap
[15] are some

Recently propo
esign concern
s by coadapt
utionary proc

heoretic mode
volving mem

ristic framewo
s that explore
tics, or heuri
most appropr
utilized to evo
onent of exist
er-heuristics fr

directly on
d hyper-heuris

to combine
components i

k has two lev
which low le
hanism) and t
nt solution (

contains a set
ifferent for e
ce has cer

xity, high le
pact on the hyp
re is considera
heuristic select
eria [3], [4]. T
ould increase
ting the cor
good accepta
oward promis

euristic to cho
s been prope
m have one (o
e been manu
ition, a manu
derable exper
small fraction

as far as we
ks that have b

arch
hm,

fore,
s to
rent
k or
ated
tive
ting
hion
only
also
[3],
tive
e of
osed

the
ting
cess
l of

metic

ork.
the

istic
riate
olve
ting
rom
the

stics
the

into

vels.
evel
then
(the
t of
each
rtain
evel
per-
able
tion
The
the

rrect
ance
sing

oose
erly
or a
ally
ally
rtise
n of
are

been

p
s
r
c

h
o
th

proposed in t
olution based
estrict their

constrained sea
Therefore, w

high level heu
of solutions in
he following (

i) Instead
heuristic
heuristic
propose
framewo
selection
using ge
GEP-HH
program
as an o
which e
individu
into a se
be used
quality o
it into th
a given
iteration
populati
measure
[22]. W
algorithm
heuristic
genetic
code blo
that is sy

Fig. 1. Th

ii) We utili
of both

the scientific
d method. Rel

ability in de
arch spaces [1
we address th
uristic compon
n a hyper-heu
(see Fig. 1):

of manuall
c of a pert
cs in a hy

e an automa
ork to autom
n mechanism
ene expression
H). The

mming framew
on-line heurist
evolves a po
ual represents
election mecha
d by the hy
of the generat
he hyper-heur

n problem ins
ns. We use
ion size in
e the perform
We utilize g
m to automat
c of the hyper
programming
oat and the f
yntactically co

he proposed gene e
heuristic (G

ize a memory
high quality a

literature [4]
iance on a sin

ealing with h
0].

he challenges
nents and of u
uristic framew

ly designing
turbative heu
yper-heuristic
atic program
matically des

and the acce
n programmin
proposed g

work, see Fig.
tic or rule ge

opulation of
a set of rule

anism and acc
yper-heuristic
ted rule is eval
ristic framewo
stance for a c

the idea of
an evolution

mance of the g
gene expressi
te the design
r-heuristic fram
g, due to its a
fact that it ge
orrect [21].

expression progra
GEP-HH) framew

mechanism, w
and diverse so

], [19] are si
ngle solution
huge and hea

of designing
using a popula

work by propo

the high l
uristic to ch

framework,
mming genera

ign the heur
eptance criteri
ng [21] (denote
gene expres
1, is impleme
eneration met
individuals. E

es that is dec
ceptance criter

framework.
luated by inse

ork and using
certain numbe
f controlling

nary algorithm
generated heur
ion programm
of the high l

mework instea
ability in avoi
nerates a solu

amming based hy
work.

which contain
lutions, see Fi

ingle
may

avily

g the
ation
osing

level
hoose

we
ation
ristic
ia by
ed as
ssion
ented
thod,
Each
oded
ria to

The
rting
it on
er of

the
m to
ristic
ming
level
ad of
iding
ution

yper-

a set
ig. 1,

which is updated as the search progresses in order to
enhance the ability of the perturbative heuristic to
choose heuristics when dealing with heavily
constrained problems in a huge search space, and
also to diversify the search.

To our knowledge, the high level heuristic components of
the currently existing hyper-heuristic frameworks are all
manually designed and they are also single based solution
methods. Hence, the proposed framework represents a
paradigm shift in using an automatic program generation
method in automating the design of hyper-heuristics or
meta-heuristic components, as well as using a population of
solutions instead of a single solution within the set of low
level heuristics. This could reduce the human expertise
required in manually customizing the high level heuristic of
the hyper-heuristic framework and could also enhance the
performance of the hyper-heuristic framework. Our
research questions are:

“Can we use a gene expression programming algorithm
framework to generate high level heuristic components
(heuristic selection mechanism and the acceptance
criteria) of the hyper-heuristic framework? Does the use
of a population of solutions, instead of a single solution,
within the hyper-heuristic framework enhance the
performance of the hyper-heuristics? “

Thus, our objectives are:

- To propose an on-line gene expression programming

(GEP-HH) framework to automatically generate the high
level heuristic components (heuristic selection
mechanism and the acceptance criteria) of the hyper-
heuristic framework.

- To propose a population based hyper-heuristic framework

by incorporating a memory mechanism which contains a
set of solutions updated during problem solving progress
in order to effectively diversify the search.

- To test the generality and the performance of the

proposed hyper-heuristic framework over six different
problem domains, of very different natures and compare
the results with the state of the art hyper-heuristics.

We demonstrate the generality and the consistency of the
proposed hyper-heuristic framework using the HyFlex
(Hyper-heuristics Flexible Framework) software [23],
which provides access to six problem domains with very
different landscape structures and complexity. The domains
are: boolean satisfiability (MAX-SAT), one dimensional
bin packing, permutation flow shop, personnel scheduling,
traveling salesman and vehicle routing. This work is among
the first attempts to apply a hyper-heuristic framework to
tackle all these challenging problems. Although it is
entirely appropriate to have a bespoke method that can
produce the best known results for one (perhaps more)
instance, having a methodology which is generally
applicable to more than one problems domain would be

more beneficial. Our ultimate goal is not to propose a
hyper-heuristic framework that can outperform the best
known methods but rather propose a methodology that
generalizes well over different problem domains. However,
the results demonstrate that the proposed hyper-heuristic is
able to update the best known results for some instances.

II. THE MOTIVATION BEHIND AUTOMATED HEURISTIC

DESIGNING

As we have mentioned earlier, given an optimization
problem and a solution method, researchers or practitioners
have to address the problem of which problem specific
structures, operators and parameter values to be used within
the given solution method in order to achieve good quality
results. Although algorithm configuration is intuitively
appealing, usually it is very difficult, if not impossible, to
manually search through all possible configurations such as
adding or removing specific operators or adjusting the
parameter values [24]. Therefore, exploring such an
interactive and large search space using other search
methods (i.e. GEP, GP or other meta-heuristic algorithms)
might yield a better performance compared to manually
designing an algorithm [6] and this is actually what the
automated heuristic design usually does.

Recently, automatic program generation methods, such as
genetic programming (GP), have paved the way for a
paradigm of optimizing or evolving the components of
search methodologies. For example, GP has been employed
in [25] to evolve the cooling schedule in simulated
annealing to solve quadratic assignment problems. Whilst,
in [26] GP has been utilized to generate constructive
heuristics for the hyper-heuristic framework. It is also used
in [27] to evolve the equation that controls the movement of
particles in particle optimization algorithms. In [28] GP has
been used to evolve the pheromone updating strategy for an
ant colony algorithm. Recently a grammatical evolution
(GE) algorithm has been utilized in [29] to evolve low level
heuristics for the bin packing problem. Whilst, GE is used
in [30] to automatically combine the high level heuristic
components of the hyper-heuristic framework. Please note
that the main difference between the proposed gene
expression framework and the framework introduced in
[30] is that the framework proposed in this paper generates
a set of rules to select the most suitable low level heuristic
and then either accepts or rejects the generated solution,
whilst the framework in [30] combines existing meta-
heuristic acceptance criteria with neighborhood structures.
Furthermore, the utilized terminal and function sets are
fundamentally different.

However, despite the success of GP based hyper-
heuristics, the same hyper-heuristic cannot be used to
generate heuristics for other domains such as exam
timetabling or vehicle routing. That is, the function and
terminal sets that have been defined for one domain cannot
be used on other domains. In this work we propose an
automatic program generation framework to automatically
generate the high level heuristic of the hyper-heuristic
framework. The novelty of our proposed framework is that
it can tackle many optimization problems using the same

set of functions and terminals. This feature distinguishes
our framework from existing GP based hyper-heuristics. In
practice, evolving or optimizing algorithm components will
not only alleviate user intervention in finding the most
effective configuration, but also facilitate algorithm
configurations.

Thus, if the automatic program generation methods can
optimize meta-heuristic components [25], [28] and evolve
the constructive heuristic of the hyper-heuristic framework
[26], then using the automatic program generation method
(GEP in this work) to automatically design the high level
heuristic of the hyper-heuristic framework in an on-line
manner may produce an effective hyper-heuristic
framework.

III. RELATED WORK

Hyper-heuristics are one of the automated heuristic design
methodologies motivated by the fact that different
heuristics impose different strength and weakness. Thus it
makes sense to merge them into one framework. A recent
definition of a hyper-heuristics framework is “an automated
methodology for selecting or generating heuristics to solve
hard computational search problems” [3]. Over the years,
hyper-heuristic frameworks have demonstrated success in
solving various classes of real world applications. A generic
hyper-heuristic framework is composed of two levels
known as high level and low level heuristics [3] (see Fig.
2). The high level heuristic is problem independent and has
no domain knowledge. Its role is to manage the selection or
generation of which heuristic are to be applied at each
decision point. The low level heuristic corresponds to a pool
of heuristics or heuristic components.

Fig. 2. A generic hyper-heuristic framework [3]

Recently, hyper-heuristic frameworks have been classified
[3] based on the nature of the heuristic search space and the
source of feedback during learning (see Fig. 3). The source
of feedback can be either on-line, if the hyper-heuristic
framework uses the feedback obtained during the problem
solving in decision making, or off-line, if the hyper-
heuristic framework uses information gathered during the
training phase in order to be used when solving other or
unseen instances. The nature of the heuristic search space is

also classified into two subclasses known as heuristics to
choose heuristics and heuristics to generate heuristics. In
either case, this is often further classified based on the
employed low level heuristics into: constructive heuristics,
which starts from scratch and keeps extending a partial
solution step by step until a complete solution is generated,
or perturbative heuristics, which starts with a complete
solution and iteratively refines it to improve its quality.

Fig. 3. Classifications of hyper-heuristic approaches, according to two
dimensions: (i) the nature of the heuristic search space and (ii) the source
of feedback during learning [3].

A. Heuristics to choose heuristics

Most of hyper-heuristic frameworks published are
heuristics to choose heuristics. These operate on a set of
human designed heuristics called low level heuristics [19].
The set of low level heuristics can be either constructive or
perturbative. The role of the hyper-heuristic framework is
to intelligently select, from a given set of low level
heuristics, which heuristic to apply at a given time. The
motivation behind heuristics to choose heuristics is that the
strength of several heuristics can be included in one
framework. A traditionally perturbative heuristic based
hyper-heuristic framework has two components, known as
the heuristic selection mechanism and the acceptance
criteria. The role of the selection mechanism is to select the
low level heuristic from the given set, whilst, the
acceptance criteria is to decide whether to accept or reject
the resultant solution after applying the selected low level
heuristic. Both components play an important role and have
significant impact on hyper-heuristic performance [19],
[20]. Examples of heuristic selection mechanisms are tabu
search [31], genetic algorithm [32], iterated local search and
variable neighborhood [33]. Examples of acceptance
criteria that have been used within hyper-heuristics are
simulated annealing, great deluge and tabu search [19].
More details of these hyper-heuristics can be found in
recent surveys [19], [4].

The cross-domain heuristic search (CHeSC) competition
has been recently introduced, which provides a common
software interface for investigating different (high level)
hyper-heuristics and provides access to six problem
domains where the low level heuristics are provided as part
of the supplied framework [23]. The algorithm designer
only needs to provide the higher level component (heuristic
selection and acceptance criterion). The adaptive hyper-
heuristic (AdapHH) proposed in [34] was the competition
winner. Their heuristic selection mechanism uses an
adaptive dynamic heuristic set or relay hybridization and an

adaptive acceptance criterion. Further details about the
competition, including further results, are available in [23].

Recently, Chen [35] introduced an algorithm
development environment (ADEP) to address meta-
heuristic design and configuration problems through an
integrated framework that allows both manual and
automated configuration of a variety meta-heuristic
approaches. The main difference between [35] and
proposed GEP-HH framework is that the proposed GEP-
HH framework generates meta-heuristic components
instead of combining and/or configuring existing ones.

Although several types of heuristic selection mechanisms
and acceptance criteria exist, no heuristic selection
mechanisms or acceptance criteria so far presented are the
best, or the most suitable, across all domains [19]. In
practice, all of them face generalization issues. This is
because the choice of which heuristic to apply does not
depend only on the problem instances but also on the
current stage of the solving process, since at each decision
point the problem instance landscape is acquiescent to at
least one low level heuristic. Most of the current heuristic
selection mechanisms use simple rules to select the low
level heuristic based on their past performance [19].
However, to quickly respond to instance landscape changes,
a sophisticated heuristic selection mechanism may be
needed. Furthermore, some low level heuristics perform
well only at the beginning of the search process while
others could be good at the end of solving process [19],
[13]. For example, the application of a certain local search
based low level heuristic would be unuseful if the solution
is already trapped in a local optima. As a result, there is a
need for a high level heuristic that is more general than
those currently available, that can use the problem state in
selecting the appropriate low level heuristic, and can cope
with several problem domains or even different instances of
the same problem.

In this work, we address this challenge by proposing a
gene expression programming framework to generate, for
each instance, the heuristic selection mechanism and the
acceptance criteria for the perturbative heuristic to choose
heuristic. What makes our proposed framework different
from others is that, at every iteration, the generated
selection mechanism and acceptance criteria favor different
criteria or information in selecting the low level heuristic
and the acceptance of the generated solution. For example,
the heuristic selection mechanism generated at iteration i
may favor the selection of the low level heuristic that has
very good performance during the previous application,
whilst, the heuristic selection mechanism generated at
iteration i+1 may favor the selection of the low level
heuristic that has been more frequently applied than those
of very good performance.

B. Heuristics to generate heuristics

In contrast to the heuristics to choose heuristics hyper-
heuristic, where the hyper-heuristic starts with a set of low
level heuristics provided manually, in a heuristics to
generate heuristics hyper-heuristic the aim is to fabricate
new low level heuristics by combining existing heuristic

components [3]. Genetic programming has been
successfully used to evolve constructive heuristics for SAT
[36], scheduling [37] and bin packing problems [26].

Despite the fact that genetic programming hyper-
heuristics have achieved good results, one can argue that
most of them are tailored to solve specific problems (e.g.
SAT and the bin packing problems) using a restricted
constructive heuristic component. Another limitation is that
they have been used in an off-line manner which may
restrict their generality because they will be tailor made to
the training instances unless the testing instances have the
same features and complexity which usually does not
reflect many real world applications.

Motivated by the achievements of the above work, in this
work, we propose a gene expression programming
framework to automatically generate the high level
heuristic for the perturbative heuristics to choose heuristics
hyper-heuristic framework. The proposed gene expression
framework can be classified as an on-line generational
hyper-heuristic and thus the same as a genetic programming
hyper-heuristic. The benefit of the proposed gene
expression programming framework is its ability to use the
current problem state to generate, for each instance,
different high level heuristic in an on-line manner which
could help the search in coping with the changes that might
happen during the instance solving process.

IV. THE PROPOSED FRAMEWORK

The proposed hyper-heuristic framework has two levels
called high level and low level heuristics. The high level
heuristic contains two components, a heuristic selection
mechanism and an acceptance criterion. The low level
heuristic contains a set of perturbative low level heuristics,
the memory mechanism and the objective function. The
proposed hyper-heuristic starts with an initial solution,
randomly selected from the memory mechanism, and
iteratively explores its neighborhood by applying a
perturbative low level heuristic. Given a pool of
perturbative low level heuristics, a complete solution
(randomly selected from the memory mechanism) and the
objective function, the proposed hyper-heuristic framework
will successively invoke the following steps for a certain
number of iterations (defined by the user):

i) Call the heuristic selection mechanism to select,
from a given pool, one perturbative low level
heuristic.

ii) Randomly selects one solution for the memory
mechanism.

iii) Apply the selected perturbative low level heuristic to
the given solution to generate a new solution.

iv) Call the objective function to evaluate the generated
solution. If it is better than the incumbent solution,
replace it with the incumbent solution and continue
the search. If not, call the acceptance criterion to
decide either to accept or reject the generated
solution according to the acceptance criterion rules.

A.

In
m
pe
Us
he
lea
re
cr
lo
th
rej
cr
be
so
Th
us
su
ac

1)
Ge
ge
of
pr
of
GE
pa
th
ge
op
di
Th
alg
po
to
wh
pr
in

F
fu
ter
se
no
fu

v) Update t
start a ne

 High level h

n the high leve
mechanism is t
erturbative lo
sually, the c
euristic to be
ad the search
gion of the s

riterion is to a
cal optima an
e search spa
jecting the g

riteria mechan
etween accept
olutions if the
herefore, this w
sing gene expr
uitable low l
ccepting and re

Fi

 Basic gene e
ene expressio
eneration meth
f a tree repr
rogramming (G
f strings with a
EP is generate
arse tree utiliz
en executed

enerate a new
perators (cross
rectly on the
hus, GEP m
gorithm and
opulation of co
 generate pro
hile avoiding
roblem in trad
 generating po
First, GEP c

unction set (F)
rminals, and t

et (T) (which r
odes of the pro
unction, GEP p

the memory m
ew iteration.

heuristic

el heuristic, the
to select, for
ow level heu
choice of w
applied is a c

h in order no
solution space
assist the sea
d at the same

ace through t
generated solu
nism should
ting improvin

e search is tra
work proposes
ression progra
level heuristi
ejecting the ge

g. 4. The propose

expression pro
on programmi
hod that uses
resentation th
GP). Each ind
a fixed size, ca
ed by convert
zing breadth-f
against the

w individual, G
sover, mutatio

linear encod
merges the ad
d genetic pr
omputer progr

ograms that ar
the problem

ditional GP). T
opulation of in
components
) (which mani
they take one
represents a s
ogram tree; th
parameters and

mechanism, th

e role of the h
a given insta

uristic from
which perturb
crucial decisio

ot to confine
e. The aim o
arch process i

time explore
the decision
ution [4]. A

be able to
ng solutions
apped in a lo
s a program g

amming to ada
ic and to b
enerated soluti

ed high level heur

ogramming al
ing (GEP) [2
a linear repre

hat is often
dividual in GEP
alled genomes
ting the indivi
first search. T
given proble

GEP applies g
on, inversion a
ding instead o
dvantages of
rogramming
rams. This fea
re always syn

of code bloa
The evolutiona
ndividuals are
are defined.
ipulates the va
 or more argu
set of nodes th
hey take no ar
d stopping con

he parameters

heuristic select
ance, the suita

those suppl
bative low le
on, as this wo
it to a locali

of the accepta
n order to av
different area
of accepting
good accepta
strike a bala
and also wo

ocal optima [2
eneration met

aptively select
balance betw
ion (see Fig. 4

ristic

lgorithm
21] is a progr
esentation inst
used in gen
P comprises a
s. The program
dual string int
The parse tree
em instance.
genetic algorit
and transpositi
of the parse t

both a gen
in evolving

ature allows G
ntactically cor
at (a well-kno
ary steps of G
shown in Fig
These are

alues returned
uments), term
hat form the
rguments), fitn
ndition.

and

tion
able
lied.
evel
ould
ized
ance
void
s of

g or
ance
ance
orse
20].
thod
t the

ween
4).

ram
tead

netic
a set
m in
to a
e is
To

thm
ion)
tree.
netic
g a
GEP
rrect
own
GEP

5.
the

d by
minal

leaf
ness

in
g
H
is
le
r
[2
in
{
b
a
le
1
in
a
is
p
e

T
th
e
fr
tr
e
n
b
th
is
te
u

m
fi
fo

Next, we g
ndividual in G

genes. Each g
Head contains
s fixed by us
ength t is calc
epresents the
21]. Thus, the
ndividual is co

{*, /, +, -} and
because the
arguments. If
ength t = 11 a

10+11 = 21.
ndividual

ab+aab+ababb
s: GEP_expre

population em
ensures the val

Update the
population

Fig. 5. B

Then, we calcu
he breadth-fir

expression tree
from left to rig
ree and other

each lower lev
n (n>=1) argu
below it as its
he correspond
s repeated un
erminals only

underlying pro
Next, two

mechanism (e.
fitness values.
following gene

generate a p
GEP is compo
gene has two

both terminal
ers. The tail

culated by the
 maximum n
e individual le
omprised of a
d terminal T =
maximum ar
we set the he

and the length
. An examp

can be
babaa and its

ession= a+b*((
mploys the hea
lidity of the ge

Genera

Calculate soluti
parse tree

Select two

Apply geneti
mutation and

tw

Calculate the f
them into parse

Terminate

Basic gene expres

ulate individu
rst manner i
es. First, scan
ght. The first s
strings are wr

vel. If the scan
uments, then t

n children. O
ding tree (term
ntil all leaves
. Next, the pro

oblem and thei
individuals a
g. roulette wh
The selected

etic operators:

population of
osed of a set
elements call

ls and function
only contains
 formula t=h*

number of fu
ength is equal
a set of symbo
= {a, b}. In th
rity of the
ead length h =
of the individ

ple of a ran
[21]:

s correspondin
(a+b)-a). Each
ad-tail encodi
enerated indiv

Set GEP parameters
ate a population of sol

ions fitness by transla
and execute the gene

o solutions from the p
(S1 and S2)

ic algorithm operator
inversion) on S1 and

wo offspring , S’1 and S

fitness of S`1 and S`2

e tree and execute the

Satisfied?
yes

No

e and return the bes

ssion programmin

ual fitness as f
individuals ar
the individual
string will for
ritten in a left

nned string is a
the next n str

Otherwise, it w
minal (T)). The

 in the corre
ogram trees ar
ir fitness value
are selected
heel selection)

individuals w

f individuals.
of symbols ca
led head and
ns and its leng

s terminals an
*(n-1) +1, whe
unction argum
 to h+t. Assum

ols of function
his example, n

function is
= 10, then the
dual will be h +
ndomly gener

GEP_gene=+
ng expression
h individual in
ing method w

vidual.

lutions

ating them into
erated tree

population

s (crossover ,
S2 to generate
S’2

2 by translating
generated tree

st solution

ng flowchart

follows: follow
re converted
l string one by
rm the node o
to right mann

a function (F)
rings are atta
will form a lea
e scanning pro
esponding tree
re executed on
es are calculat
by the selec
 according to

will go through

An
alled
tail.

gth h
nd its
ere n

ments
me a

n F =
n = 2

two
e tail
+ t =
rated

+*ab-
 tree
n the

which

wing
into

y one
of the
ner at
with

ached
af of
ocess
e are
n the
ed.
ction
their
h the

i) Crossover: exchanges elements between two randomly
selected genes from the chosen parents (e.g., one-point
and two point crossover).

ii) Mutation: change any string in the generated individual
while making sure that the string in the head part can
be changed into both terminal and function and, string
in the tail part can be changed into terminals only.

iii) Inversion: reveres small sequence of strings within the
head or tail.

iv) Convert the created individuals (offsprings) to program
trees and execute them on the underlying problem to
calculate their fitness values.

v) Following roulette wheel (or other selection operators)
sampling with elitism, the fittest individuals are always
copied into the next generation.

This process is executed until the stopping condition is
satisfied (e.g. a given number of generations).

2) The proposed gene expression programming framework
to generate the high level heuristic components
In this work, we propose a gene expression programming
framework to automatically generate the high level
heuristic selection mechanism and the acceptance criteria,
based on a given problem instance, for the perturbative
heuristic to choose heuristic hyper-heuristic framework.
This is an on-line heuristic generation method based hyper-
heuristic which iteratively evolves a population of
individuals through the evolution process. Each individual
represents a set of rules which are decoded into a selection
mechanism and acceptance criterion to be used by the
hyper-heuristic framework. To simultaneously generate
both selection mechanism and the acceptance criterion,
each individual is divided into two parts of equal size to
represent both components. For example, in a individual of
m strings, strings 1 to m/2 will be used for the selection
mechanism and strings m/2 to m will be used for the
acceptance criterion. Each part has a head of a user defined
length h (contains terminal and function) and a tail
(contains terminal only) of length t=h*(n-1) +1, where n
represent the maximum number of function arguments.
Each part employs the head-tail encoding method which
ensures the validly of the generated program which
represents one expression tree for the selection mechanism
and acceptance criterion, respectively.

Except crossover, genetic operators (mutation and
inversion) can occur at any point as long as the gene rules
are respected, i.e., a head element can be changed into
terminal or function, whilst, a tail element can be changed
into terminal only. Crossover operators will exchange
elements between two randomly selected genes from the
chosen parents within the same parts. For example, if the
selected genes are from the first part of the first individual,
these genes will be replaced with those in the first part of
the second individual. This will ensure that the exchanged
genes are the same types, i.e., either for the selection
mechanism or the acceptance criterion.
To run the proposed gene expression programming
framework, one needs to define the following components:

1- Terminal and function sets

A crucial issue in the design of the proposed framework
is the definition of the terminal set (T) and the function
set (F). The terminal set (T) represents a set of variables
which will express the state of the underlying problems.
The function set (F) represents a set of arithmetic or
logical operators that will be used to connect or
compose the terminal set (T). To use the proposed
framework across various problems, we keep the
definition of the terminal set (T) and function set (F) as
general and simple as possible. By doing so, the
proposed framework can be used across other problem
domains, in addition to those considered in this work.
Since the purpose of the heuristic selection mechanism
is fundamentally different from the acceptance criterion,
we use two terminal sets. The first set represents the
selection mechanism, whilst, the second represents the
acceptance criterion.

To cope with instance changes that might happen
during the instance solving process, the proposed
framework utilizes several evaluation criteria to
represent the terminal sets in such a way that their
combination will favor one criterion among others and
these evaluation criteria will be updated during instance
solving. Each evaluation criterion favors the selection of
the low level heuristic from a different perspective. The
rationale behind this is that some low level heuristics
perform well only at the beginning of the search process
while others could be better at the end of the process.
Therefore, the heuristic selection mechanism should be
able to quickly respond to instance landscape changes
by selecting the appropriate low level heuristic. The
function (F) and terminal (T) sets of the selection
mechanism that have been used in this work are
presented in Table 1. The utilized terminals for the
heuristic selection are:

- Reward credit (RC): The main idea of this reward is

that infrequently used low level heuristics which lead
to a large improvement in the solution quality are
preferred to be selected more than those that lead to a
small improvement. Thus, as a result, the low level
heuristic which brings frequent, but small
improvements will get less reward and consequently
has a lesser chance of being preferred [13]. This
terminal is good in reducing the heuristic search
space by only favoring certain low level heuristics.

- Update the best known solution counter (Cbest): This
terminal favors the low level heuristic that manage to
update the best known results. This terminal is good
in systematically improving the current local optima.

- Update the counter of accepting current solution
(Ccurrent): This terminal favors the low level heuristic
that manages to update the current solution. This
terminal is good in keeping the search focused
around the current local solution.

- Update counter of accept solution (Caccept): This
terminal favors the low level heuristic that produces
a solution that is accepted by the acceptance

criterion. This terminal is good in helping the search
to escape from a local optima.

- Update the average improvement counter (Cava): This
terminal favors the low level heuristic that has made
a large improvement on average. This terminal is
good at focusing the search on the current area in the
search space.

- Update the first rank counter (Cr): This terminal
favors the low level heuristic that has been selected
first. This terminal is good for applying the current
low level heuristic.

Please note that the terminal (T) set of the heuristic
selection mechanism is used for the low level heuristic
and their value together with function (F) set are used
to rank the low level heuristics.

TABLE 1 THE TERMINAL AND FUNCTION SET OF THE
SELECTION MECHANISM

Terminals set for the heuristics selection mechanism
terminal description

RC The extreme value-based reward is used to
calculate the credit (CA) for each low level
heuristic. When the i-th low level heuristic is
applied, its corresponding improvement to the
current solution is computed. The improvement
gained is then saved for the i-th low level
heuristic in a sliding time window of size W,
following the rule of FIFO. The credit of any
low level heuristic is then set as the maximum
value in its corresponding sliding window W.
In this work, the improvement gained (PI) from
the i-th low level heuristic is calculated as
follows: PI(i) =(/f1-f2/f1)*100 if f2<f1. Where
f1 is the quality of the current solution and f2 is
the quality of the resultant solution after
applying the i-th low level heuristic.

Cbest The number of times that the i-th low level
heuristic has updated the best known solution.

Ccurrent The number of times that the i-th low level
heuristic has updated the current solution.

Caccept The number of times that the generated solution
by the i-th low level heuristic has been accepted
by the acceptance criterion.

Cava The average of the previous improvement
strength of the i-th low level over the search
process.

Cr The number of times that the i-th low level
heuristic has been ranked the first.

Function set for the heuristics selection mechanism

function description
+ Add two inputs.
- Subtract the second input from the first one.
* Multiply two inputs.
% Protected divide function, i.e., change the

division by zero into 0.001.

The function (F) and terminal (T) sets of the
acceptance criteria that have been used in this work are
presented in Table 2.

TABLE 2 THE TERMINAL AND FUNCTION SET OF THE
ACCEPTANCE CRITERIA

Terminals set for the acceptance criteria mechanism
terminal description

delta The change in the solution quality

PF The quality of the previous solution
CF The quality of the current solution
CI Current iteration
TI Total number of iterations

Function set for the acceptance criteria mechanism

function description
+ Add two inputs.
- Subtract the second input from the first one.
* Multiply two inputs.
ex The result of the child node is raised to its power

(Euler’s number).
% Protected divide function, i.e., change the

division by zero into 0.001.

2- Fitness function

The aim of the fitness function is to evaluate the
performance of the generated high level heuristics
(population individual). In this work, we use the idea in
[22] that was used to control the population size in an
evolutionary algorithm to evaluate the fitness of the
generated high level heuristics. The probability of
selecting each high level heuristic (an individual in the
GEP framework) is updated according to the quality of
the best solution returned, after the stopping condition
is satisfied. The quality of the returned solution is
usually either better or worse than the one that has been
used as an input solution for the hyper-heuristic
framework. Formally, let Ah[] represent the array of
the probability of selecting the high level heuristics
(individual), fi and fb represent the fitness of the initial
and returned solutions, NoH represents the number of
high level heuristics (individuals) or the population size
of GEP. Then, if the application of the i-th high level
heuristic leads to an improvement in the solution
quality, then reward the i-th high level heuristic
(individual) as follows: Ah[i] = Ah[i]+∆ where ∆ = (fi -
fb) / (fi + fb). Other high level heuristics, j{1,…,

NoH} and j ≠ i, are penalized as Ah[j] = Ah[j] -
(∆/(NoH-1)). Otherwise (if the solution cannot be
improved), then penalize the i-th high level heuristic,
Ah[i]= Ah[i]-|(∆*α)| where α= Current_Iteration /
Total_Iteration and reward other high level heuristics,
 j{1,…, NoH} and j ≠ i, Ah[j] =Ah[j] +

(|∆|*α/(NoH-1)). Please note that the main idea behind
decreasing the probability of other high level heuristic
is to decrease their chances of being selected. Initially,
the probability of each high level heuristic (individual)
is calculated by translating them into expression trees
and executing the corresponding program.

3- The stopping condition

In this work, the maximum number of consecutive non
improvement iterations is used as the stopping
condition (see section V.A).

When all elements are defined, the proposed framework is
carried out as follows (see Fig. 6):

i) Generate a population of individuals.

ii) Calculate the fitness of the population by inserting
them into the hyper-heuristic framework and using it
to solve a given instance for a certain number of
iterations.

iii) Iteratively selects two parents, apply crossover and
mutation operators to generate two offspring,
evaluate the fitness of the generated offspring and
update the population. This is executed for a certain
number of generations.

The main role of GEP is to evolve a population of
individuals, each encoding a high level heuristic (selection
mechanism and acceptance criterion) which will be used by
the hyper-heuristic framework. The hyper-heuristic
framework will be called at every generation to evaluate the
generated offspring. When the proposed hyper-heuristic is
called the following steps will be carried out:

i) Decoded the current individual into a heuristic
selection mechanism and an acceptance criterion,
i.e., translate it into two expression trees for the
selection mechanism and the acceptance criterion,
respectively. Then, use the terminal (T) set value of
each low level heuristic as the input for the selection
mechanism expression tree.

ii) Execute the selection mechanism expression tree and
rank the given set of low level heuristics from the
highest to the lowest based on the value retuned from
the expression tree.

iii) Randomly select one solution for the memory
mechanism. Apply the highest ranked low level
heuristic to the given solution and calculate the
quality of the generated solution.

iv) If the generated solution is better than the current
one, the current one is replaced. If not, the hyper-
heuristic will call the acceptance criterion expression
tree and execute the corresponding program. Then,
the generated solution by the low level heuristic is
accepted if the exponential of the value retuned by
the acceptance criterion expression tree is less or
equal to 0.5 (the exp function returns values between
0 and 1). In the literature, a value of 0.5 was
suggested [26], but for different domains. The value
0.5 was also determined based on preliminary
testing.

v) Repeatedly apply the current low level heuristic until
no improvement is returned.

vi) If no improvement is returned, the hyper-heuristic
framework will stop applying the current low level
heuristic and restarts from the local optimum
obtained by current low level heuristic, but with next
low level heuristic in the ranked list.

vii) If the hyper-heuristic framework reaches the end of
the low level heuristic ranked list, it executes the
current heuristic selection mechanism expression tree
again and rank the given set of low level heuristics
and restart the search from the local optimum, but
using the current highest ranked low level heuristic.

viii) The proposed hyper-heuristic framework will keep
using the utilized high level heuristic components

(selection mechanism and acceptance criterion),
which is generated by the GEP framework, for a pre-
defined number of iterations (see section V. A).

Fig. 6. The proposed hyper-heuristic

B. Low level heuristics

The low level heuristic of the proposed hyper-heuristic
framework has three components as follows:

1) A set of perturbative low level heuristics
In this work, a pool of problem-specific perturbative
heuristics is used as low level heuristics. The aim of the
low level heuristics is to explore the neighborhoods of the
current solution by altering the current solution
(perturbation). The generated neighborhood solution is
accepted if it does not break the imposed hard constraints
and also satisfies the acceptance criterion. Thus, the
employed low level heuristic explores only the feasible
search space. Details of these perturbative heuristics are
presented in the problem description sections (see section
V.C).

2) Memory mechanism
Most hyper-heuristic frameworks that have been proposed
in the scientific literature operate on a single solution [4],
[19]. Reliance on a single solution may restrict their ability
in dealing with a large and heavily constrained search
space, as it is widely known that single solution based
methods are not well suited to cope with the large search
spaces and heavily constrained problems [10]. In order to
enhance the efficiency of the proposed hyper-heuristic
framework and to diversify the search, we embed it with a
memory mechanism as in [38] which contains a collection
of both high quality and diverse solutions, updated as the
algorithm progresses. The integrated memory mechanism

interacts with the high level heuristic as follows: first
initialize the memory mechanism by generating a set of
diverse solutions (randomly or by using a heuristic method,
see Section V). For each solution, associate a frequency
matrix to measure solution diversity. The frequency matrix
stores the frequency of an object assigned to the same
location. At every iteration, the high level heuristic will
randomly select one solution from the memory; apply the
selected low level heuristic to this solution, update both the
solution in memory and the solution frequency matrix.

The associated frequency matrix is represented by a two
dimensional array where rows represent objects and
columns represent locations. For example, in the bin
packing problem, the frequency matrix stores how many
times the item has been assigned to the same bin. Whilst, in
the vehicle routing problem, it stores how many times a
customer has been assigned to the same route. In this work,
objects represent the items in the bin packing problem or
customers in the vehicle routing problem, while locations
represent bins in the bin packing problem and routes in the
vehicle routing problems.

Fig. 7 shows an example of a solution and its
corresponding frequency matrix. The frequency matrix is
initialized to zero. We can see five objects (represented by
rows, items or customers) and there are five available
locations (represented by columns, bins or routes). The
solution on the left side of Fig. 7 can be read as follows:
object 1 is assigned to location 1, object 2 is assigned to
location 3, etc. The frequency matrix on the right side of
Fig. 7 can be read as follows: object 1 has been assigned to
location 1 twice, to location 2 three times, to location 3
once, to location 4 four times and to location 5 once; and so
on for the other objects.

Location

O
bj

ec
ts

 1 2 3 4 5 1 2 3 4 5
1 1 0 0 0 0

O
bj

ec
ts

1 2 3 1 4 1
2 0 0 1 0 0 2 1 1 1 2 2
3 0 0 0 0 1 3 2 2 2 2 1
4 0 0 0 1 0 4 2 1 3 1 1
5 0 1 0 0 0 5 2 1 2 1 3

 solution frequency matrix

Fig. 7. Solution and its corresponding frequency matrix.

If any solution is used by the hyper-heuristic framework,
then we update the frequency matrix of this solution. Next
we calculate the quality and the diversity of this solution. In
this work, the quality represents the quality of the solution
of a given instance (see section V). The diversity is
measured using the entropy information theory (see
Equations (1) and (2)) as follows [38]:

e
m

e

m

ee

j

ijij

i log

log.
1

 (1)

e

e

i i 1

 (2)

Where
- eij is the frequency of allocating object i to location j.
- m is the number of objects.

- εi is the entropy for object i.
- ε is the entropy for one solution (0 ≤ εi≥ 1).

Next, add the new solution to the memory mechanism by
considering the solution quality and diversity.

3) Objective function
The objective function is problem dependent and it
measures the quality of the generated solution (see section
V).

V. EXPERIMENTAL SETUP

In this section, we will discuss the parameter settings of
GEP-HH, problem description and the perturbative low
level heuristics of the considered problems.

A. GEP-HH Parameter Settings

Fine tuning the algorithm parameters for optimal
performance is usually a tedious task that needs
considerable expertise and experience [6]. Therefore, the
parameter values of the GEP-HH are obtained by using
Relevance Estimation and Value Calibration method
(REVAC) [39]. REVAC is a tool for parameter
optimization, where a steady state genetic algorithm and
entropy theory are used in defining algorithm parameter
values. REVAC is utilized to find the generic values that
can be used for all considered domains instead of finding
the optimal one which is problem (if not instances)
dependent.

Taking into consideration the solution quality and the
computational time needed to achieve good quality
solutions, the running time for each instance is fixed to 20
seconds and the number of iterations performed by REVAC
is fixed at 100 iterations (see [39] for more details). To do
so, we tuned GEP-HH for each domain separately and then
used the average of the minimum value for each parameter
obtained by REVAC for all tested instances. Then the
average values over all tested instances for all domains for
each parameter are set as the generic values for GEP-HH.
Table 3 lists the parameter settings of GEP-HH that have
been used for all problem domains.

TABLE 3 GEP-HH PARAMETERS

Parameters
Possible
Range

Suggested Value by
REVAC

Population size 5-50 10
Number of generations 10-200 100
One point crossover
probability

0.1-0.9 0.7

Mutation probability 0.1-0.9 0.1
Inversion rate 0.1-0.9 0.1
Head length h 2-40 5
Selection mechanism - Roulette Wheel

Crossover type
Two/multi/
one point

One point

Consecutive non
improvement

1-1000 50

The sliding window size
W

2-100 20

Memory mechanism size 2-40 8

B. Problem Description

In this work, we used HyFlex (Hyper-heuristics Flexible
Framework) to test the generality and the performance of
GEP-HH. HyFlex is a java framework which provides six
problem domains (boolean satisfiability (MAX-SAT), one
dimensional bin packing, permutation flow shop, personnel
scheduling, traveling salesman and vehicle routing), the
initial solution generation method, and a set of perturbative
low level heuristics [23]. HyFlex was used during the cross-
domain heuristic search challenge competition (CHeSC) in
order to compare the performance of hyper-heuristic
methods and to support researchers in their efforts to
develop generally applicable hyper-heuristics for various
problem domains. In addition, we also report in the
appendix, the results of testing GEP-HH on exam
timetabling and dynamic vehicle routing problems (See the
supplementary file).

1) Boolean Satisfiability (MAX-SAT) Problems
Boolean Satisfiability problems can be defined as follows
[40]: given a formula of Boolean variables, determine the
assignment of truth values to the variables that can make
the formula true. MAX-SAT, which is an extension of
Boolean Satisfiability, is an optimization problem where the
aim is to determine the maximum number of true clauses of
a given Boolean formula. In other words, the aim of the
optimization process is to minimize the number of
unsatisfied clauses in a given formula. The instances that
were considered in this work are summarized in Table 4.
The set of initial solutions are randomly generated by
assigning either true or false value to each variable. The
quality of the solution is measured based on how many
`broken' clauses in a given formula i.e., those which
evaluate to false. See [40] for more details.

TABLE 4 THE MAX-SAT INSTANCES

Instances Name Variables Clauses
Instance 1 parity-games/instance-n3-i3-pp 525 2276
Instance 2 parity-games/instance-n3-i4-pp-

ci-ce
696 3122

Instance 3 parity-games/instance-n3-i3-pp-
ci-ce

525 2336

Instance 4 jarvisalo/eq.atree.braun.8.unsat 684 2300
Instance 5 highgirth/3SAT/HG-3SAT-

V300-C1200-4
300 1200

2) One Dimensional Bin Packing Problems
The one dimensional bin packing is a well-known
combinatorial optimization problem. Given a set of items of
a fixed weight and a finite number of bins of fixed capacity,
the goal is to pack all items into as few bins as possible
[41]. The packing process should respect the following
constraints: each item should be assigned to one bin only
and the total weight of items in each bin should be less or
equal to the bin capacity. The aim of the optimization
process is to minimize the number of bins that are used.
Table 5 shows the characteristic of the considered
instances. The set of initial solutions are generated as
follows: first, generate a random sequence of items and then
pack them one by one into the first bin which they will fit,
i.e. “first fit heuristic”. The quality of solution is measured

by quality=
2

1

1
1

n

i C

fl

n
where n is the number of

bins, fl is the sum of the sizes of all the pieces in bin i, and
C the bin capacity. See [41] for more details.

TABLE 5 THE ONE DIMENSIONAL BIN PACKING INSTANCES
Instances Name Capacity No. Pieces
Instance 1 triples2004/instance1 1000 2004
Instance 2 falkenauer/u1000-01 150 1000
Instance 3 test/testdual7/binpack0 100 5000
Instance 4 50-90/instance1 150 2000
Instance 5 test/testdual10/binpack0 100 5000

3) Permutation Flow Shop Problems
The permutation flow shop problem is defined as, while
respecting the imposed constraints, find the sequence for a
set of jobs to be processed on a set of consecutive machines
with the minimal completion time of the last job to exit the
shop [42]. Each job requires a processing time on a
particular machine. One machine can only process one job
at a time. Jobs can be processed by only one machine at a
time. The job ordering process should be respected and
machines are not allowed to remain idle when a job is ready
for processing. Table 6 shows the characteristic of the
considered instances. The set of initial solutions are
generated by using the NEH [42] algorithm which works as
follows: first generate a random permutation of jobs and an
empty schedule. Then, assign the first job in the
permutation sequence into the schedule, second job into
places 1 and 2; third job into places 1, 2 and 3, and so on.
Each assignment should be fixed where the partial schedule
has the smallest makespan time, i.e. completion time of the
last job. The quality of solution represents the completion
time of the last job in the schedule. See [42] for more
details.

TABLE 6 THE PERMUTATION FLOW SHOP INSTANCES

Instances Name No. jobs No. Machines
Instance 1 100x20/2 100 20
Instance 2 500x20/2 500 20
Instance 3 100x20/4 100 20
Instance 4 200x20/1 200 20
Instance 5 500x20/3 500 20

4) Personnel Scheduling Problems
Personnel scheduling is a well-known NP-hard problem.
Given a set of employees of specific categories, a set of pre-
defined periods (shifts) on a working day, and a set of
working days; the aim of the optimization process is to
assign each employee to specific planning periods to meet
the operational requirements and satisfying a range of
preferences as much as possible [43]. Due to the variety of
hard and soft constraints, which are different from one
organization to another, the modeling and implementation
is challenging. A unique general mathematical model to
accommodate all related constraints does not exist. Table 7
gives the characteristics of the considered instances. The set
of initial solutions are created by using a neighborhood
operator which incrementally adds new shifts to the roster
until all employees have been scheduled. The quality of the

generated solutions is assessed based on how many soft
constraints are satisfied. See [43] for more details.

TABLE 7 THE PERSONNEL SCHEDULING PROBLEMS INSTANCES
Instances Name Staff Shift Types Days
Instance 1 Ikegami-3Shift-DATA1.2 25 3 30
Instance 2 MER-A 54 12 42
Instance 3 ERRVH-B 51 8 42
Instance 4 BCV-A.12.1 12 5 31
Instance 5 ORTEC01 16 4 31

5) Traveling Salesman Problems
The traveling salesman problem is a very popular
combinatorial optimization problem [44]. In its classic
form, given a set of cities and their positions (pairwise
distances), the aim is to find the shortest path where each
city is visited only once and the path ends at the starting
city. The aim of the optimization process is to minimize the
traveling distance. Table 8 gives the characteristics of the
considered instances. The set of initial solutions are created
by randomly generating permutation sequences. The quality
of solution is represented by the total distance of the route.

TABLE 8 THE TRAVELING SALESMAN INSTANCES

Instances Name No. Cities
Instance 1 pr299 299
Instance 2 usa13509 13509
Instance 3 rat575 575
Instance 4 u2152 2152
Instance 5 d1291 1291

6) Vehicle Routing Problems
The vehicle routing problem is a well-known challenging
combinatorial optimization problem [45]. Given a set of
customers associated with demand and serving time, and a
fleet of vehicles with a maximum capacity, the aim is to
design a least cost set of routes to serve all customers,
where each vehicle starts and ends at the depot, the total
demand of each route does not exceed the vehicle capacity,
each customer is visited exactly once by exactly one vehicle
during its time window(s). Table 9 shows the characteristics
of the considered instances. The set of initial solutions are
generated as follows: first create an empty route, then loop
through all customers and add any one to the current route
that does not violate any constraints. If no customer can be
added to the current route, create a new route. The process
is repeated until all customers have been assigned to a
route. The quality of solution represents the total travel
distance.

TABLE 9 THE VEHICLE ROUTING PROBLEMS INSTANCES

Instances Name
No.

Vehicles
Vehicle

Capacity
Instance 1 Homberger/RC/RC2-10-1 250 1000
Instance 2 Solomon/RC/RC103 25 200
Instance 3 Homberger/C/C1-10-1 250 200
Instance 4 Solomon/R/R101 25 1000
Instance 5 Homberger/RC/RC1-10-5 250 200

C. The perturbative low level heuristics

HyFlex provides, for each of the considered problems, a set
of different perturbative low level heuristics. The set of

perturbative low level heuristics are classified into four
types as follows:

- Mutational or perturbation heuristics: generate a new
solution by modifying the current solution by changing,
removing, swapping, adding or deleting one solution
component. Mutation intensity is controlled by α, 0<= α
<=1.

- Ruin-recreate (destruction-construction) heuristics:
destroy part of the current solution and recreate it in a
different way to generate a new solution. The difference
between ruin-recreate and mutational heuristics is that the
ruin-recreate can be seen as large neighborhood
structures and they use problem specific construction
heuristics to recreate the solutions.

- Hill-climbing or local search heuristics: iteratively
perturb the current solution, only accepting improving
solutions, until a local optimum is found or a stopping
condition is satisfied. The difference between hill-
climbing and mutational heuristics is that hill-climbing is
an iterative improvement process, accepting only
improving solutions. The depth of search is controlled by
β, 0<= β <=1.

- Crossover heuristics: take two solutions and produce a
new one by combining them.

Table 10 shows the total number of each type of the
perturbative low level heuristics for the six problem
domains [23].

TABLE 10 HYFLEX LOW LEVEL HEURISTIC TYPES
Problem domains M R&R HC Xover Total
1- Boolean Satisfiability 4 1 2 2 9
2- One Dimensional Bin

Packing
3 2 2 1 8

3- Permutation Flow Shop 5 2 4 3 15
4- Personnel Scheduling 1 3 4 3 12
5- Traveling Salesman 5 1 6 3 15
6- Vehicle Routing 4 2 4 2 12
Note: M: mutation. R&R: Ruin-recreate. HC: Hill-climbing. Xover:
Crossover

VI. COMPUTATIONAL RESULTS AND DISCUSSION

This section is devoted to assess the performance of GEP-
HH against other hyper-heuristic methods in the literature.
Our aims are:

- To assess the benefit of integrating the memory

mechanism within GEP-HH.
- To test the generality and consistency of GEP-HH over

six different problem domains and compare it to the state
of the art of hyper-heuristic methods.

In this work, we have carried out, for each problem domain,
two sets of experiments:
i) The first one compares the performance of the GEP-HH

with the memory mechanism (GEP-HH) against GEP-
HH without the memory mechanism (denoted as GEP-
HH*) using the same parameter values and
computational resources.

ii) The second evaluates the performance of GEP-HH
against the top five hyper-heuristics of the first cross-

domain heuristic search challenge (CHeSC) [23]. These
are: AdapHH [34], VNS-TW [46], ML [47], PHUNTER
[48] and EPH [49].

Following CHeSC, rules and in order to make the
comparison as fair as possible, for both experimental tests,
the execution time is used as the stopping condition. It is
determined by using the benchmark software provided by
the organizers to ensure fair comparisons between
researchers using different platforms [23]. We have used
this software to determine the allowed execution time using
our computer resources (i.e. 10 minutes on the benchmark
machine).
 The best, average, standard deviation and median of
GEP-HH and GEP-HH* over independent 31 runs
(adhering to the CHeSC competition rules) are reported for
each instance. In addition, the percentage deviation from
the best known value found in the hyper-heuristic literature
is also calculated for each instance as follows:

%
*

*
(%)

best

bestbest HHGEP
 (3)

where bestGEP-HH is the best result returned over 31
independent runs by GEP-HH and best* is the best result
obtained by other hyper-heuristic methods.

To demonstrate the generality, consistency and the
effectiveness of GEP-HH across all tested problem
domains, we have compared the performance of GEP-HH
against GEP-HH* and existing hyper-heuristic methods
based on generality, consistency, efficiency, statistical test
and formula one (see [30] for more details).

A. The computational results of GEP-HH compared to
GEP-HH*

The first set of experiments presents the comparison
between GEP-HH and GEP-HH* across all of the six
considered problems. Each problem domain contains 5
instances and the total number of tested instances is 30. The
computational results of GEP-HH and GEP-HH* over 31
independent runs for the six problems are summarized in
Table 11.

Observing the results reported in Table 11, we can make
the following observations: in terms of solution quality,
GEP-HH outperformed GEP-HH* on 18, tieing with GEP-
HH* on 11 and being inferior on 1 (MAX-SAT Instances 4)
out of 30 instances of the considered problem domains.
From the average results perspective, it is clear that, across

all instances of the considered problems domains, GEP-HH
is the overall best.

In addition to the solution quality and the average results,
it is natural to ask how consistent GEP-HH is, i.e., how
likely GEP-HH would perform well over multiple runs on
each instance compared to GEP-HH*. This question can be
answered by analyzing the standard deviation and the
median over 31 runs as well as the box-plots of solution
distributions. In general, the standard deviation produced by
GEP-HH is smaller than those from GEP-HH* for all
instances of the considered problem domains (except PS 2
in Table 11). From the median perspective, we can draw the
following conclusion: GEP-HH obtained better median
results for 19, tieing on 3 and being slightly worse than
GEP-HH* on 8 out of 30 instances of the considered
problem domains. To save space, the box-plot figures (Figs.
8 to 13) are presented in the supplementary file. Figs. 8 to
13 show the box-plot of results distribution of GEP-HH and
GEP-HH* for all instances of the considered problem
domains, where one can clearly see that, for most instances,
GEP-HH is more consistent than GEP-HH*. This indicates
that GEP-HH is more consistent than GEP-HH* across all
tested problem domains.

In addition to the above results, it is worth drawing some
statistical significant conclusions regarding the performance
of GEP-HH and GEP-HH*. Therefore, the Wilcoxon test
(pairwise comparisons) with significant level of 0.05 is
performed. The p-value of the Wilcoxon test of GEP-HH
versus GEP-HH* are presented in the last column of Table
11. Where “S+” indicate GEP-HH is statistically better than
GEP-HH* (p-value <0.05), “S-” indicate GEP-HH
outperformed by GEP-HH* (p-value >0.05) and “~”
indicate both algorithms have the same performance (p-
value =0.05). The results in Table 11 (last column) show
that GEP-HH is statistically better than GEP-HH* on 23
instances, not statistically better than GEP-HH* on 5 and
perform the same as GEP-HH* on 2 instances out of 30
tested instances of the considered problem domains.

To summarize, the results demonstrate that GEP-HH is
better than GEP-HH* in term of consistency, efficiency and
generality (with regards to the tested instances of the
considered problem domains). This is mainly due to the use
of memory mechanism within GEP-HH which has a
positive effect on the ability of GEP-HH in producing good
quality and consistent results compared to GEP-HH*.

TABLE 11 THE RESULT OF GEP-HH COMPARING TO GEP-HH* FOR ALL PROBLEM DOMAINS

 Instances
GEP-HH GEP-HH* GEP-HH vs. GEP-HH*

Best Average Std Median Best Average Std Median p-value

M
A

X
-S

A
T

 SAT 1 1 4.4 1.70 3 1 5.0 1.74 3 S+
SAT 2 1 13.0 11.01 3 5 20.4 13.73 5 S+
SAT 3 1 3.8 2.44 2 1 4.7 3.26 3 S+
SAT 4 4 8.0 4.60 4 1 12.3 6.78 8 S-
SAT 5 7 7.8 0.88 7 7 10.3 3.20 8 S+

B
in

 P
ac

ki
ng

 BP 1 0.0131 0.029 0.013 0.0192 0.034 0.053 0.021 0.0168 S+
BP 2 0.0029 0.005 0.003 0.0032 0.0067 0.011 0.006 0.0036 S+
BP 3 0.0011 0.003 0.002 0.0039 0.0035 0.014 0.004 0.0038 S+
BP 4 0.1083 0.108 0.001 0.1083 0.1083 0.115 0.024 0.1085 S-
BP 5 0.0031 0.015 0.010 0.0066 0.0031 0.027 0.016 0.0066 S+

F l FS 1 6212 6243.29 10.39 6245 6212 6283.12 89.57 6248 S+

FS 2 26721 26821 83.79 26898 26744 26887.9 85.12 26804 S+
FS 3 6285 6325.83 11.87 6326 6295 6335.83 16.25 6323 S+
FS 4 11320 11376.7 24.56 11377 11327 11377 27.12 11359 S+
FS 5 26530 26616 40.70 26634 26531 26638 50.37 26604 S+

P
er

so
n

ne
l

Sc
he

d
ul

in
g PS 1 11 18.64 3.91 21 14 33.80 24.10 22 S+

PS 2 9345 10830.4 1660.5 9628 9345 11077.0 1403.8 9630 S-
PS 3 3123 3312.16 83.10 3351 3124 3369.38 104.79 3231 ~
PS 4 1364 1541.48 86.52 1555 1378 1619.54 133.14 1590 S+
PS 5 280 306.54 14.25 315 290 322.45 27.03 320 S+

T
ra

ve
li

n
g

Sa
le

sm
an

 TSP 1 48194.9 48222.72 38.41 48194.9 48194.9 48519.82 450.35 48194.9 S-
TSP 2 20754969 21227727 255264 21268571 20910693 21536045 760071.4 21270792 ~
TSP 3 6796 6828.34 13.80 6810.5 6796.0 6868.6 54.98 6816.2 S+
TSP 4 65952.1 67118.9 493.71 67105.2 66448.2 67360.89 624.27 66898.2 S+
TSP 5 52050 54393.66 1015.18 54755.3 52052.7 55547.7 1879.55 54896.8 S+

V
eh

ic
le

R

ou
ti

ng
 VRP 1 58052.1 60046.3 1444.7 60720.0 67012.9 82505.9 5722.2 83094.9 S+

VRP 2 12261.0 12814.52 519.7 12337.9 12263.0 13639.4 907.4 13341.0 S+
VRP 3 142479.1 145294.4 1622.3 145418.9 142562.5 145664.7 1857.9 145329.9 S-
VRP 4 20650.8 20653.6 1.3 20653.8 20650.8 20684.2 6.3 20683.5 S+
VRP 5 144258.1 148943.6 1365.3 149007.9 144258.1 149326.4 2488.1 149107.9 S+

B. The computational results of GEP-HH compared to
other hyper-heuristic methods

We now assess the performance GEP-HH versus the top
five hyper-heuristic methods from the CHeSC competition
[23] (AdapHH, VNS-TW, ML, PHUNTER and EPH) from
the best and median results perspective. In addition, we
have also included the results of GEP-HH* (without
memory) in the comparison to assess its ability in
producing good quality solutions compared to the top five
hyper-heuristic methods from the CHeSC competition.
Table 12 present the best, percentage deviation and
instances ranking results for the six problems obtained by
GEP-HH along with a comparison with respect to the best
result of top five hyper-heuristic methods from the CHeSC
competition. Please note that all the compared methods
(GEP-HH, GEP-HH* and the top five hyper-heuristics)
used the 10 minute execution time as the stopping condition
which is determined by the benchmark software provided
by the CHeSC organizers.

The results in Table 12 suggest that, out of 30 instances,
GEP-HH outperformed the top five hyper-heuristic methods
on 12 instances, match the best results on 12 instances and
is inferior on 6 instances. We can also remark that GEP-HH
without memory mechanism (GEP-HH*) manages to

produce new best results for 6 instances and tieing on 12
out of 30 instances compared to the top five hyper-heuristic
methods.

In Table 13, we provide the median, percentage deviation
and instances ranking results achieved by GEP-HH in
comparison with the median results obtained by the top five
hyper-heuristic methods from the CHeSC competition as
well as GEP-HH* median results. It is clear from Table 13
that, GEP-HH obtained better median results for 4 instances
and tie with other hyper-heuristic methods on 8 out of 30
instances. Table 13 also show that GEP-HH without
memory mechanism (GEP-HH*) obtained better median
results for 1 instance and matched the best in 6 out of 30
instances of the considered problem domains.

To summarize, even though GEP-HH did not manage to
obtain the best results for all instances, the percentage
deviation of these instances is, however, relatively small
and GEP-HH achieved the second best and third best results
for other instances. One can clearly see that both GEP-HH
and GEP-HH* have generalized well across all tested
domains and produced good quality results compared to the
top five hyper-heuristic methods in the existing literature.

TABLE 12 THE BEST RESULT OF GEP-HH and GEP-HH* COMPARING TO THE TOP FIVE HYPER-HEURISTICS

 GEP-HH GEP-HH* The top five hyper-heuristic framework from CHeSC competition
 Instances Best ∆(%) Rank Best AdapHH VNS-TW ML PHUNTER EPH

M
A

X
-S

A
T

 SAT 1 1 0.0 1 1 1 1 1 1 4
SAT 2 1 0.0 1 5 3 1 3 5 5
SAT 3 1 0.0 1 1 1 1 1 2 2
SAT 4 4 300 2 1 1 1 4 4 5
SAT 5 7 0.0 1 7 9 7 7 7 7

B
in

 P
ac

ki
ng

 BP 1 0.0131 0 1 0.034 0.0131 0.0298 0.0323 0.0397 0.0430
BP 2 0.0029 3.5 2 0.0067 0.0028 0.0036 0.0067 0.0034 0.0034
BP 3 0.0011 175 2 0.0035 0.0004 0.0136 0.0124 0.0178 0.0080
BP 4 0.1083 0 1 0.1083 0.1083 0.1087 0.1084 0.1088 0.1083
BP 5 0.0031 0 1 0.0031 0.0031 0.0238 0.0178 0.0318 0.0136

F
lo

w
 S

h
op

 FS 1 6212 -0.03 1 6212 6214 6230 6226 6221 6232
FS 2 26721 -0.06 1 26744 26757 26765 26744 26786 26738
FS 3 6285 -0.2 1 6295 6303 6303 6304 6303 6309
FS 4 11320 0.01 2 11327 11318 11333 11338 11336 11328
FS 5 26530 -0.01 1 26531 26541 26535 26559 26600 26569

l
Sc he

PS 1 11 0.00 1 14 17 13 11 13 16
PS 2 9345 -0.02 1 9345 9435 9347 9436 9624 9747

PS 3 3123 -0.03 1 3124 3142 3124 3138 3142 3142
PS 4 1364 1.03 2 1378 1448 1370 1384 1350 1469
PS 5 280 -3.44 1 290 295 290 300 290 310

T
ra

ve
li

ng

S
al

es
m

an
 TSP 1 48194.9 0.00 1 48194.9 48194.9 48194.9 48194.9 48194.9 48194.9

TSP 2 20754969 0.01 3 20910693 20752853.8 2084855.6 20793219.8 20754199.8 20941645.1
TSP 3 6796 0.00 1 6796.0 6797.5 6796.0 6805.3 6796.0 6799.2
TSP 4 65952.1 -0.009 1 66448.2 66277.1 66830.2 66428.2 66641.4 65958.6
TSP 5 52050 -0.006 1 52052.7 52383.8 52896.5 52626.7 52172.0 52053.4

V
eh

ic
le

R

ou
ti

ng
 VRP 1 58052.1 0.0 1 67012.9 58052.1 68340.4 67622.1 61139.3 63932.2

VRP 2 12261.0 -0.016 1 12263.0 13304.9 13298.1 13298.4 12263.0 13284.0
VRP 3 142479.1 -0.02 1 142562.5 145481.5 144012.6 142517.0 143663.9 143510.8
VRP 4 20650.8 0.0 1 20650.8 20652.3 20651.1 20651.1 20650.8 20650.8
VRP 5 144258.1 -1.17 1 144258.1 146154.0 146513.6 146200.8 146472.9 145976.5

TABLE 13 THE MEDIAN RESULT OF GEP-HH and GEP-HH* COMPARING TO THE TOP FIVE HYPER-HEURISTICS
 GEP-HH GEP-HH* The top five hyper-heuristic framework from CHeSC competition
 Instances Median ∆(%) Rank Median AdapHH VNS-TW ML PHUNTER EPH

M
A

X
-S

A
T

 SAT 1 3 0.0 1 3 3 3 5 5 7
SAT 2 3 0.0 1 5 5 3 10 11 11
SAT 3 2 0.0 1 3 2 2 3 4 6
SAT 4 4 33.3 2 8 3 3 9 9 15
SAT 5 7 -12.5 1 8 8 10 8 8 13

B
in

 P
ac

ki
n

g BP 1 0.0192 19.2 2 0.0168 0.0161 0.0370 0.0421 0.0479 0.0504
BP 2 0.0032 -11.1 1 0.0036 0.0036 0.0072 0.0075 0.0036 0.0036
BP 3 0.0039 8.3 2 0.0038 0.0036 0.0167 0.0146 0.0201 0.0113
BP 4 0.1083 0 1 0.1085 0.1083 0.1088 0.1085 0.1091 0.1087
BP 5 0.0066 88.5 2 0.0066 0.0035 0.0278 0.0218 0.0395 0.0224

F
lo

w
 S

h
op

 FS 1 6245 0.08 2 6248 6240 6251 6245 6253 6250
FS 2 26898 0.36 6 26804 26814 26803 26800 26858 26816
FS 3 6326 0.04 2 6323 6326 6328 6323 6350 6347
FS 4 11377 0.15 3 11359 11359 11376 11384 11388 11397
FS 5 26634 0.12 3 26604 26643 26602 26610 26677 26640

P
er

so
nn

el

S
ch

ed
ul

in
g PS 1 21 16.6 2 22 24 19 18 25 22

PS 2 9628 0.0 1 9630 9667 9628 9812 10136 10074
PS 3 3351 3.9 6 3231 3289 3223 3228 3255 3232
PS 4 1555 -2.2 1 1590 1765 1590 1605 1595 1615
PS 5 315 0.0 1 320 325 320 315 320 345

T
ra

ve
li

ng

Sa
le

sm
an

 TSP 1 48194.9 0.0 1 48194.9 48194.9 48194.9 48194.9 48194.9 48194.9
TSP 2 21041571 0.01 2 21270792 20822145.7 21042675.8 21093828.3 21246427.7 21064606.3
TSP 3 6810.5 0.0 1 6816.2 6810.5 6819.1 6820.6 6813.6 6811.9
TSP 4 67105.2 0.5 4 66898.2 66879.8 67378.0 66894.0 67136.8 66756.2
TSP 5 54755.3 3.4 5 54896.8 53099.8 54028.6 54368.4 52934.4 52925.3

V
eh

ic
le

R

ou
ti

ng
 VRP 1 60720.0 -0.20 1 83094.9 60900.6 76147.1 80671.3 64717.8 74715.8

VRP 2 12337.9 0.3 2 13341.0 13347.6 13367.9 13329.8 12290.0 13335.6
VRP 3 145418.9 0.05 2 145329.9 148516.8 148206.2 145333.5 146944.4 162188.5
VRP 4 20653.8 0.01 2 20683.5 20656.6 21642.9 20654.1 20650.8 20650.8
VRP 5 149007.9 0.23 4 149107.9 148689.2 149132.4 148975.1 148659.0 155224.7

C. DISCUSSION

The numerical results presented throughout this work
demonstrate that, across six very different combinatorial
optimization problems, GEP-HH achieved favorable results
compared to the top five hyper-heuristic methods from the
CHeSC competition. More importantly, out of the 30
instances GEP-HH matched the best results for 12 instances
and manages to obtain new best results for 12 instances. In
all domains, the standard deviation and the percentage
deviation of GEP-HH reveal that GEP-HH results are stable
and very close to the best results obtained by other hyper-
heuristic methods. These results are also supported by
statistical tests and box-plots of solution distribution. In
order to compare the performance of GEP-HH against the
top five hyper-heuristic methods from the CHeSC
competition (AdapHH, VNS-TW, ML, PHUNTER and

EPH) more accurately, we have conducted the following
comparison:

i) In the first comparison we used Formula one that was

used in the CHeSC competition [23] to calculate the
score of GEP-HH and the top five hyper-heuristic
methods. Table 14 shows the overall rankings of GEP-
HH and the top five hyper-heuristic methods (the higher
the better). We also included GEP-HH* in the
comparisons. It is interesting to note that GEP-HH
obtained the first rank, whilst, GEP-HH* obtained the
third rank compared to the top five hyper-heuristic
methods.

TABLE 14 THE RANKING OF GEP-HH AND THE TOP FIVE HYPER-
HEURISTICS

Hyper-heuristics Score
1- GEP-HH 167.03

2- AdapHH 155.7
3 GEP-HH* 130.43
4- VNS-TW 110.2
5- ML 101.33
6- PHUNTER 63.83
7- EPH 75.25

ii) In the second comparison, we conducted a multiple

comparison statistical tests between GEP-HH and the
top five hyper-heuristic methods. To do so, we
performed Friedman and Iman-Davenport tests with a
critical level of 0.05 to detect whether there are
statistical differences between the results of these
methods. The p-value of Friedman (p-value = 0.000)
and Iman-Davenport (p-value =0.000) are less than the
critical level 0.05, which implies that there is a
significant difference between the compared methods.
As a result, we conducted a Friedman test to calculate
the average ranking of each method. Table 15
summarizes the average ranking (the lower the better)
produced by the Friedman test for each method. It is
obvious that, GEP-HH ranked the first, followed by
AdapHH, GEP-HH*, ML, VNS-TW, PHUNTER and
EPH.

TABLE 15 THE AVERAGE RANK OBTIANED
BY FRIEDMAN TEST

Hyper-heuristics Ranking
1- GEP-HH 3.2333
2- AdapHH 3.2667
3- GEP-HH* 3.6833
4- ML 3.8667
5- VNS-TW 4.05
6- PHUNTER 4.9333
7- EPH 4.9667

Overall, the advantages of the proposed framework are the
ability to utilize the information about the current state
during instance solving to automatically generate the
heuristic selection mechanism and an acceptance criterion.
Results demonstrate that it provides a general mechanism
regardless of the nature and complexity of the instances and
can be applied to other domains without many changes (i.e.
the user only needs to change the low level heuristics).
Applying a methodology to other problem domains or even
different instances of the same problem usually requires a
considerable amount of modification (e.g. change algorithm
parameters or structures). Our GEP-HH provides automated
heuristic method that can cope with not only different
instances of the same problem, but we have demonstrated
its generality across six different problem domains. We
would hope that the proposed methodology would also
generalize to other domains.

VII. CONCLUSIONS

In this work, we have proposed a new hyper-heuristic
framework for combinatorial optimization problems. At the
higher level, we have introduced a gene expression
programming framework to automatically generate the high
level heuristic of the hyper-heuristic framework. The
proposed gene expression programming framework evolves
a population of individuals and each one is decoded into a

heuristic selection mechanism and an acceptance criterion.
The evolved heuristic selection mechanism takes the
current state as input (pervious performance) and decides
which low level heuristic is to be applied. Then, the
generated solution is accepted if it satisfies the evolved
acceptance criterion. At the lower level, we employed a set
of human designed perturbative low level heuristics to
perturb the solution of a given instance. To diversify the
search, we have embedded the proposed hyper-heuristic
with a memory mechanism, which contains a set of high
quality and diverse solutions, which are updated during the
search.

We have shown that gene expression programming
algorithm can be effectively used to automatically generate
the high level heuristics of the perturbative hyper-heuristic
framework. The efficiency, consistency and the generality
of GEP-HH is demonstrated across six challenging
problems using HyFlex software. The experimental results
demonstrate that GEP-HH achieves highly competitive
results, if not superior, and generalizes well over six
problem domains (MAX-SAT, one dimensional bin
packing, permutation flow shop, personnel scheduling,
traveling salesman and vehicle routing problems) when
compared to GEP-HH without a memory mechanism as
well as the top five hyper-heuristic methods from the
CHeSC competition. The main contributions of this work
are:

1- The development of a GEP-HH hyper-heuristic

framework that automatically generates, during instance
solving process, the high level heuristic (heuristic
selection mechanism and the acceptance criteria) of the
improvement based hyper-heuristic framework.

2- The development of a population based hyper-heuristic
framework that uses a memory mechanism of a set of
solutions, which is updated during the solving process to
effectively diversify the search.

3- The development of a hyper-heuristic framework that is
not customized to specific problems class and can be
applied to different problems without much
development effort.

In our future work, we intend to investigate the
effectiveness of the GEP-HH across other combinatorial
optimization problems.

REFERENCES

[1] E. G. Talbi, Metaheuristics: From design to implementation:
Wiley Online Library, 2009.

[2] T. Weise, M. Zapf, R. Chiong, and A. Nebro, "Why is
optimization difficult?," Nature-Inspired Algorithms for
Optimisation, pp. 1-50, 2009.

[3] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J.
R. Woodward, "A classification of hyper-heuristic approaches,"
Handbook of Metaheuristics, pp. 449-468, 2010.

[4] K. Chakhlevitch and P. Cowling, "Hyperheuristics: recent
developments," Adaptive and multilevel metaheuristics, pp. 3-
29, 2008.

[5] Y. Hamadi, E. Monfroy, and F. Saubion, "What is Autonomous
Search?," Hybrid Optimization, pp. 357-391, 2011.

[6] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle,
"ParamILS: an automatic algorithm configuration framework,"

Journal of Artificial Intelligence Research, vol. 36, pp. 267-
306, 2009.

[7] A. E. Eiben, R. Hinterding, and Z. Michalewicz, "Parameter
control in evolutionary algorithms," IEEE Transactions on
Evolutionary Computation, vol. 3, pp. 124-141, 1999.

[8] X. Chen, Y. S. Ong, M. H. Lim, and K. C. Tan, "A multi-facet
survey on memetic computation," IEEE Transactions on
Evolutionary Computation, vol. 15, pp. 591-607, 2011.

[9] Y. S. Ong and A. J. Keane, "Meta-Lamarckian learning in
memetic algorithms," IEEE Transactions on Evolutionary
Computation, vol. 8, pp. 99-110, 2004.

[10] C. Blum, J. Puchinger, G. R. Raidl, and A. Roli, "Hybrid
metaheuristics in combinatorial optimization: A survey,"
Applied Soft Computing, 2011.

[11] F. Hutter, H. H. Hoos, and K. Leyton-Brown, "Tradeoffs in the
empirical evaluation of competing algorithm designs," Annals
of Mathematics and Artificial Intelligence, vol. 60, pp. 65-89,
2010.

[12] D. H. Wolpert and W. G. Macready, "No free lunch theorems
for optimization," IEEE Transactions on Evolutionary
Computation, vol. 1, pp. 67-82, 1997.

[13] Á. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag,
"Analyzing bandit-based adaptive operator selection
mechanisms," Annals of Mathematics and Artificial
Intelligence, vol. 60, pp. 25-64, 2010.

[14] M. Brunato and R. Battiti, "R-EVO: A Reactive Evolutionary
Algorithm for the Maximum Clique Problem," IEEE
Transactions on Evolutionary Computation, pp. 1-13, 2010.

[15] J. A. Vrugt, B. A. Robinson, and J. M. Hyman, "Self-adaptive
multimethod search for global optimization in real-parameter
spaces," IEEE Transactions on Evolutionary Computation, vol.
13, pp. 243-259, 2009.

[16] X. Chen and Y.-S. Ong, "A Conceptual Modeling of Meme
Complexes in Stochastic Search," IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and
Reviews, vol. 42, pp. 612-625, 2012.

[17] M. N. Le, Y.-S. Ong, Y. Jin, and B. Sendhoff, "A Unified
Framework for Symbiosis of Evolutionary Mechanisms with
Application to Water Clusters Potential Model Design," IEEE
Computational Intelligence Magazine, vol. 7, pp. 20-35, 2012.

[18] J. E. Smith, "Coevolving Memetic Algorithms: A Review and
Progress Report," IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 37, pp. 6-17, 2007.

[19] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and R.
Qu, "Hyper-heuristics: A Survey of the State of the Art,"
Journal of the Operational Research Society, in press, 2013.

[20] E. Özcan, B. Bilgin, and E. E. Korkmaz, "A comprehensive
analysis of hyper-heuristics," Intelligent Data Analysis, vol. 12,
pp. 3-23, 2008.

[21] C. Ferreira, Gene Expression Programming: Mathematical
Modeling by an Artificial Intelligence (Studies in
Computational Intelligence): Springer-Verlag New York, Inc.,
2006.

[22] J. Arabas, Z. Michalewicz, and J. Mulawka, "GAVaPS-a
genetic algorithm with varying population size," in Proceedings
of the 1st IEEE Conference on Evolutionary Computation,
1994, pp. 73-78 vol. 1.

[23] G. Ochoa, M. Hyde, T. Curtois, J. Vazquez-Rodriguez, J.
Walker, M. Gendreau, G. Kendall, B. McCollum, A. Parkes, S.
Petrovic, and E. Burke, "HyFlex: A Benchmark Framework for
Cross-Domain Heuristic Search," in Evolutionary Computation
in Combinatorial Optimization, 2012, pp. 136-147.

[24] F. G. Lobo, C. F. Lima, and Z. Michalewicz, Parameter setting
in evolutionary algorithms vol. 54: Springer Verlag, 2007.

[25] A. Bölte and U. W. Thonemann, "Optimizing simulated
annealing schedules with genetic programming," European
Journal of Operational Research, vol. 92, pp. 402-416, 1996.

[26] E. K. Burke, M. Hyde, G. Kendall, and J. Woodward, "A
genetic programming hyper-heuristic approach for evolving 2-
D strip packing heuristics," IEEE Transactions on Evolutionary
Computation, vol. 14, pp. 942-958, 2010.

[27] W. Langdon and R. Poli, "Evolving problems to learn about
particle swarm optimizers and other search algorithms," IEEE
Transactions on Evolutionary Computation, vol. 11, pp. 561-
578, 2007.

[28] J. Tavares and F. B. Pereira, "Towards the development of self-
ant systems," in Proceedings of the 13th annual conference on
Genetic and evolutionary computation (GECCO), 2011, pp.
1947-1954.

[29] E. K. Burke, M. R. Hyde, and G. Kendall, "Grammatical
Evolution of Local Search Heuristics," IEEE Transactions on
Evolutionary Computation, pp. 1-1, 2012.

[30] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, "Grammatical
Evolution Hyper-heuristic for Combinatorial Optimization
problems," IEEE Transactions on Evolutionary Computation,
to appear 2013.

[31] E. K. Burke, G. Kendall, and E. Soubeiga, "A tabu-search
hyperheuristic for timetabling and rostering," Journal of
Heuristics, vol. 9, pp. 451-470, 2003.

[32] P. Garrido and M. C. Riff, "DVRP: a hard dynamic
combinatorial optimisation problem tackled by an evolutionary
hyper-heuristic," Journal of Heuristics, vol. 16, pp. 795-834,
2010.

[33] R. Qu and E. K. Burke, "Hybridizations within a graph-based
hyper-heuristic framework for university timetabling
problems," Journal of the Operational Research Society, vol.
60, pp. 1273-1285, 2008.

[34] M. Misir, K. Verbeeck, P. De Causmaecker, and G. Vanden
Berghe, "An intelligent hyper-heuristic framework for chesc
2011," in The 6th Learning and Intelligent Optimization
Conference (LION12). Paris, France, 2012.

[35] X. Chen, "An algorithm development environment for
problem-solving: software review," Memetic Computing, vol. 4,
pp. 149-161, 2012/06/01 2012.

[36] M. Bader-El-Den and R. Poli, "Generating SAT local-search
heuristics using a GP hyper-heuristic framework," in Artificial
Evolution, 2008, pp. 37-49.

[37] J. C. Tay and N. B. Ho, "Evolving dispatching rules using
genetic programming for solving multi-objective flexible job-
shop problems," Computers & Industrial Engineering, vol. 54,
pp. 453-473, 2008.

[38] E. G. Talbi and V. Bachelet, "Cosearch: A parallel cooperative
metaheuristic," Journal of Mathematical Modelling and
Algorithms, vol. 5, pp. 5-22, 2006.

[39] V. Nannen and A. Eiben, "Efficient relevance estimation and
value calibration of evolutionary algorithm parameters," in
IEEE Congress on Evolutionary Computation, 2007, pp. 103-
110.

[40] M. Hyde, G. Ochoa, J. A. Vázquez-Rodríguez, and T. Curtois,
"A HyFlex Module for the MAX-SAT Problem," University of
Nottingham, Tech. Rep.2011.

[41] M. Hyde, G. Ochoa, T. Curtois, and J. Vázquez-Rodríguez, "A
hyflex module for the one dimensional bin-packing problem,"
School of Computer Science, University of Nottingham, Tech.
Rep 2010.

[42] J. A. Vázquez-Rodrıguez, G. Ochoa, T. Curtois, and M. Hyde,
"A hyflex module for the permutation flow shop problem,"
School of Computer Science, University of Nottingham, Tech.
Rep 2010.

[43] T. Curtois, G. Ochoa, M. Hyde, and J. A. Vázquez-Rodríguez,
"A hyflex module for the personnel scheduling problem,"
School of Computer Science, University of Nottingham, Tech.
Rep 2010.

[44] M. Bellmore and G. L. Nemhauser, "The traveling salesman
problem: a survey," Operations Research, pp. 538-558, 1968.

[45] P. Toth and D. Vigo, "The vehicle routing problem, Society for
industrial and applied mathematics," SIAM Monographs on
Discrete Mathematics and Applications, 2002.

[46] P. C. Hsiao, T. C. Chiang, and L. C. Fu, "A variable
neighborhood search-based hyperheuristic for cross-domain
optimization problems in CHeSC 2011 competition " CHeSC
2011 competition 2011.

[47] M. Larose, "A Hyper-heuristic for the CHeSC 2011," CHeSC
2011 competition 2011.

[48] F. Xue, C. Chan, W. Ip, and C. Cheung, "Pearl Hunter: A
Hyper-heuristic that Compiles Iterated Local Search
Algorithms," CHeSC 2011 competition 2011.

[49] D. Meignan, "An Evolutionary Programming Hyper-heuristic
with Co-evolution for CHeSC’11," CHeSC 2011 competition
2011.

