
 
Abstract—Hyper-heuristic approaches aim to automate 

heuristic design in order to solve multiple problems instead of 
designing tailor-made methodologies for individual problems. 
Hyper-heuristics accomplish this through a high level heuristic 
(heuristic selection mechanism and an acceptance criterion). 
This automates heuristic selection, deciding whether to accept 
or reject the returned solution. The fact that different 
problems or even instances, have different landscape 
structures and complexity, the design of efficient high level 
heuristics can have a dramatic impact on hyper-heuristic 
performance. In this work, instead of using human knowledge 
to design the high level heuristic, we propose a gene expression 
programming algorithm to automatically generate, during the 
instance solving process, the high level heuristic of the hyper-
heuristic framework. The generated heuristic takes 
information (such as the quality of the generated solution and 
the improvement made) from the current problem state as 
input and decides which low level heuristic should be selected 
and the acceptance or rejection of the resultant solution. The 
benefit of this framework is the ability to generate, for each 
instance, different high level heuristics during the problem 
solving process. Furthermore, in order to maintain solution 
diversity, we utilize a memory mechanism which contains a 
population of both high quality and diverse solutions that is 
updated during the problem solving process. The generality of 
the proposed hyper-heuristic is validated against six well 
known combinatorial optimization problem, with very 
different landscapes, provided by the HyFlex software. 
Empirical results comparing the proposed hyper-heuristic 
with state of the art hyper-heuristics, conclude that the 
proposed hyper-heuristic generalizes well across all domains 
and achieves competitive, if not superior, results for several 
instances on all domains. 
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I. INTRODUCTION 

The growth in the complexity and constraints of 
optimization problems that can be found in many real world 
applications makes them not only an ongoing challenge but 
also implies that they cannot be solved using exact methods 
within tractable (or acceptable) computational time [1], [2]. 
Alternatively, meta-heuristic approaches, which offer no 
guarantee of returning an optimal solution (or even near 
optimal solutions), becomes not only a suitable option but 
also the only available option, as they usually return 
reasonably good solutions within a reasonable time. 
Although the efficiency of meta-heuristic approaches has 
been demonstrated over several real world applications, 
their success is due to the use of domain-specific 
knowledge [3], [4], [5]. As a consequence, to solve a given 
problem by a meta-heuristic algorithm, practitioners usually 
have to face the problem of configuring the selected meta-
heuristic such as selecting the appropriate problem specific 
structures, most suitable operators and fine tuning the 
parameters, which are non-trivial tasks [6], [7] .  

Over the years, it has become evident that the decision of 
which problem specific structures, operators and parameter 
values to be included (or excluded) in a given meta-
heuristic algorithm has an impact on algorithm performance 
[3], [8], [9], [10]. Thus, to obtain a good quality solution, 
meta-heuristic approaches have to be expertly crafted by 
incorporating problem-specific knowledge of the 
underlying problem instance [3], [11]. Customization of a 
meta-heuristic can be problem or even instance dependent 
and consequently will decrease its generality. Moreover, 
according to the No Free Lunch Theorem [12] no single 
algorithm with a unique configuration is able to perform 
well over all problem instances. As a consequence, when 
new problems are considered, meta-heuristics need to be 
(re)developed, which is usually not only time consuming 
but also requires a deep understanding of both algorithm 
behavior and the instance structure. Broadly speaking, at 
the expense of generality, researchers and practitioners have 
concentrated their effort on outperforming existing methods 
on one, or a few instances, by tailoring a given algorithm to 
the problem at hand.   

Arguably, meta-heuristic configuration plays a crucial 
role on the algorithm performance [5], [6]. Furthermore, 
different problems require different configurations, and 
even for different instances of the same problem using a 
different configuration during the solving process could 
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which is updated as the search progresses in order to 
enhance the ability of the perturbative heuristic to 
choose heuristics when dealing with heavily 
constrained problems in a huge search space, and 
also to diversify the search.  

 
To our knowledge, the high level heuristic components of 
the currently existing hyper-heuristic frameworks are all 
manually designed and they are also single based solution 
methods. Hence, the proposed framework represents a 
paradigm shift in using an automatic program generation 
method in automating the design of hyper-heuristics or 
meta-heuristic components, as well as using a population of 
solutions instead of a single solution within the set of low 
level heuristics. This could reduce the human expertise 
required in manually customizing the high level heuristic of 
the hyper-heuristic framework and could also enhance the 
performance of the hyper-heuristic framework. Our 
research questions are:  
 
“Can we use a gene expression programming algorithm 
framework to generate high level heuristic components 
(heuristic selection mechanism and the acceptance 
criteria) of the hyper-heuristic framework? Does the use 
of a population of solutions, instead of a single solution, 
within the hyper-heuristic framework enhance the 
performance of the hyper-heuristics? “ 

 
Thus, our objectives are: 
 
- To propose an on-line gene expression programming 

(GEP-HH) framework to automatically generate the high 
level heuristic components (heuristic selection 
mechanism and the acceptance criteria) of the hyper-
heuristic framework.  

 
- To propose a population based hyper-heuristic framework 

by incorporating a memory mechanism which contains a 
set of solutions updated during problem solving progress 
in order to effectively diversify the search.  

 
- To test the generality and the performance of the 

proposed hyper-heuristic framework over six different 
problem domains, of very different natures and compare 
the results with the state of the art hyper-heuristics. 

 
We demonstrate the generality and the consistency of the 
proposed hyper-heuristic framework using the HyFlex 
(Hyper-heuristics Flexible Framework) software [23], 
which provides access to six problem domains with very 
different landscape structures and complexity. The domains 
are: boolean satisfiability (MAX-SAT), one dimensional 
bin packing, permutation flow shop, personnel scheduling, 
traveling salesman and vehicle routing. This work is among 
the first attempts to apply a hyper-heuristic framework to 
tackle all these challenging problems. Although it is 
entirely appropriate to have a bespoke method that can 
produce the best known results for one (perhaps more) 
instance, having a methodology which is generally 
applicable to more than one problems domain would be 

more beneficial. Our ultimate goal is not to propose a 
hyper-heuristic framework that can outperform the best 
known methods but rather propose a methodology that 
generalizes well over different problem domains. However, 
the results demonstrate that the proposed hyper-heuristic is 
able to update the best known results for some instances. 

II. THE MOTIVATION BEHIND AUTOMATED HEURISTIC 

DESIGNING  

As we have mentioned earlier, given an optimization 
problem and a solution method, researchers or practitioners 
have to address the problem of which problem specific 
structures, operators and parameter values to be used within 
the given solution method in order to achieve good quality 
results. Although algorithm configuration is intuitively 
appealing, usually it is very difficult, if not impossible, to 
manually search through all possible configurations such as 
adding or removing specific operators or adjusting the 
parameter values [24]. Therefore, exploring such an 
interactive and large search space using other search 
methods (i.e. GEP, GP or other meta-heuristic algorithms) 
might yield a better performance compared to manually 
designing an algorithm [6] and this is actually what the 
automated heuristic design usually does.  

Recently, automatic program generation methods, such as 
genetic programming (GP), have paved the way for a 
paradigm of optimizing or evolving the components of 
search methodologies. For example, GP has been employed 
in [25] to evolve the cooling schedule in simulated 
annealing to solve quadratic assignment problems. Whilst, 
in [26] GP has been utilized to generate constructive 
heuristics for the hyper-heuristic framework. It is also used 
in [27] to evolve the equation that controls the movement of 
particles in particle optimization algorithms. In [28] GP has 
been used to evolve the pheromone updating strategy for an 
ant colony algorithm. Recently a grammatical evolution 
(GE) algorithm has been utilized in [29] to evolve low level 
heuristics for the bin packing problem. Whilst, GE is used 
in [30]  to automatically combine the high level heuristic 
components of the hyper-heuristic framework.  Please note 
that the main difference between the proposed gene 
expression framework and the framework introduced in 
[30] is that the framework proposed in this paper generates 
a set of rules to select the most suitable low level heuristic 
and then either accepts or rejects the generated solution, 
whilst the framework in [30] combines existing meta-
heuristic acceptance criteria with neighborhood structures. 
Furthermore, the utilized terminal and function sets are 
fundamentally different. 

However, despite the success of GP based hyper-
heuristics, the same hyper-heuristic cannot be used to 
generate heuristics for other domains such as exam 
timetabling or vehicle routing. That is, the function and 
terminal sets that have been defined for one domain cannot 
be used on other domains. In this work we propose an 
automatic program generation framework to automatically 
generate the high level heuristic of the hyper-heuristic 
framework. The novelty of our proposed framework is that 
it can tackle many optimization problems using the same 



set of functions and terminals. This feature distinguishes 
our framework from existing GP based hyper-heuristics. In 
practice, evolving or optimizing algorithm components will 
not only alleviate user intervention in finding the most 
effective configuration, but also facilitate algorithm 
configurations. 

Thus, if the automatic program generation methods can 
optimize meta-heuristic components [25], [28] and evolve 
the constructive heuristic of the hyper-heuristic framework 
[26], then using the automatic program generation method 
(GEP in this work) to automatically design the high level 
heuristic of the hyper-heuristic framework in an on-line 
manner may produce an effective hyper-heuristic 
framework.  

III. RELATED WORK  

Hyper-heuristics are one of the automated heuristic design 
methodologies motivated by the fact that different 
heuristics impose different strength and weakness. Thus it 
makes sense to merge them into one framework. A recent 
definition of a hyper-heuristics framework is “an automated 
methodology for selecting or generating heuristics to solve 
hard computational search problems” [3]. Over the years, 
hyper-heuristic frameworks have demonstrated success in 
solving various classes of real world applications. A generic 
hyper-heuristic framework is composed of two levels 
known as high level and low level heuristics [3] (see Fig. 
2). The high level heuristic is problem independent and has 
no domain knowledge. Its role is to manage the selection or 
generation of which heuristic are to be applied at each 
decision point. The low level heuristic corresponds to a pool 
of heuristics or heuristic components.  

Fig. 2. A generic hyper-heuristic framework [3] 

 
Recently, hyper-heuristic frameworks have been classified 
[3] based on the nature of the heuristic search space and the 
source of feedback during learning (see Fig. 3). The source 
of feedback can be either on-line, if the hyper-heuristic 
framework uses the feedback obtained during the problem 
solving in decision making, or off-line, if  the hyper-
heuristic framework uses information gathered during the 
training phase in order to be used when solving other or 
unseen instances. The nature of the heuristic search space is 

also classified into two subclasses known as heuristics to 
choose heuristics and heuristics to generate heuristics. In 
either case, this is often further classified based on the 
employed low level heuristics into: constructive heuristics, 
which starts from scratch and keeps extending a partial 
solution step by step until a complete solution is generated, 
or perturbative heuristics, which starts with a complete 
solution and iteratively refines it to improve its quality.  
 

Fig. 3. Classifications of hyper-heuristic approaches, according to two 
dimensions: (i) the nature of the heuristic search space and (ii) the source 
of feedback during learning [3]. 

A. Heuristics to choose heuristics 

Most of hyper-heuristic frameworks published are 
heuristics to choose heuristics. These operate on a set of 
human designed heuristics called low level heuristics [19]. 
The set of low level heuristics can be either constructive or 
perturbative. The role of the hyper-heuristic framework is 
to intelligently select, from a given set of low level 
heuristics, which heuristic to apply at a given time. The 
motivation behind heuristics to choose heuristics is that the 
strength of several heuristics can be included in one 
framework. A traditionally perturbative heuristic based 
hyper-heuristic framework has two components, known as 
the heuristic selection mechanism and the acceptance 
criteria. The role of the selection mechanism is to select the 
low level heuristic from the given set, whilst, the 
acceptance criteria is to decide whether to accept or reject 
the resultant solution after applying the selected low level 
heuristic. Both components play an important role and have 
significant impact on hyper-heuristic performance [19], 
[20]. Examples of heuristic selection mechanisms are tabu 
search [31], genetic algorithm [32], iterated local search and 
variable neighborhood [33]. Examples of acceptance 
criteria that have been used within hyper-heuristics are 
simulated annealing, great deluge and tabu search [19]. 
More details of these hyper-heuristics can be found in  
recent surveys [19], [4].  

The cross-domain heuristic search (CHeSC) competition 
has been recently introduced, which provides a common 
software interface for investigating different (high level) 
hyper-heuristics and provides access to six problem 
domains where the low level heuristics are provided as part 
of the supplied framework [23]. The algorithm designer 
only needs to provide the higher level component (heuristic 
selection and acceptance criterion). The adaptive hyper-
heuristic (AdapHH) proposed in [34] was the competition 
winner. Their heuristic selection mechanism uses an 
adaptive dynamic heuristic set or relay hybridization and an 



adaptive acceptance criterion. Further details about the 
competition, including further results, are available in [23]. 

Recently, Chen [35] introduced an algorithm 
development environment (ADEP) to address meta-
heuristic design and configuration problems through an 
integrated framework that allows both manual and 
automated configuration of a variety meta-heuristic 
approaches. The main difference between [35] and 
proposed GEP-HH framework is that the proposed GEP-
HH framework generates meta-heuristic components 
instead of combining and/or configuring existing ones. 

Although several types of heuristic selection mechanisms 
and acceptance criteria exist, no heuristic selection 
mechanisms or acceptance criteria so far presented are the 
best, or the most suitable, across all domains [19]. In 
practice, all of them face generalization issues. This is 
because the choice of which heuristic to apply does not 
depend only on the problem instances but also on the 
current stage of the solving process, since at each decision 
point the problem instance landscape is acquiescent to at 
least one low level heuristic. Most of the current heuristic 
selection mechanisms use simple rules to select the low 
level heuristic based on their past performance [19]. 
However, to quickly respond to instance landscape changes, 
a sophisticated heuristic selection mechanism may be 
needed. Furthermore, some low level heuristics perform 
well only at the beginning of the search process while 
others could be good at the end of solving process [19], 
[13]. For example, the application of a certain local search 
based low level heuristic would be unuseful if the solution 
is already trapped in a local optima. As a result, there is a 
need for a high level heuristic that is more general than 
those currently available, that can use the problem state in 
selecting the appropriate low level heuristic, and can cope 
with several problem domains or even different instances of 
the same problem. 

In this work, we address this challenge by proposing a 
gene expression programming framework to generate, for 
each instance, the heuristic selection mechanism and the 
acceptance criteria for the perturbative heuristic to choose 
heuristic. What makes our proposed framework different 
from others is that, at every iteration, the generated 
selection mechanism and acceptance criteria favor different 
criteria or information in selecting the low level heuristic 
and the acceptance of the generated solution. For example, 
the heuristic selection mechanism generated at iteration i 
may favor the selection of the low level heuristic that has 
very good performance during the previous application, 
whilst, the  heuristic selection mechanism generated at 
iteration i+1 may favor the selection of the low level 
heuristic that has been more frequently applied than those 
of very good performance.  

 

B. Heuristics to generate heuristics  

In contrast to the heuristics to choose heuristics hyper-
heuristic, where the hyper-heuristic starts with a set of low 
level heuristics provided manually, in a heuristics to 
generate heuristics hyper-heuristic the aim is to fabricate 
new low level heuristics by combining existing heuristic 

components [3]. Genetic programming has been 
successfully used to evolve constructive heuristics for SAT 
[36], scheduling  [37] and bin packing  problems [26].  

Despite the fact that genetic programming hyper-
heuristics have achieved good results, one can argue that 
most of them are tailored to solve specific problems (e.g. 
SAT and the bin packing problems) using a restricted 
constructive heuristic component. Another limitation is that 
they have been used in an off-line manner which may 
restrict their generality because they will be tailor made to 
the training instances unless the testing instances have the 
same features and complexity which usually does not 
reflect many real world applications.      

Motivated by the achievements of the above work, in this 
work, we propose a gene expression programming 
framework to automatically generate the high level 
heuristic for the perturbative heuristics to choose heuristics 
hyper-heuristic framework. The proposed gene expression 
framework can be classified as an on-line generational 
hyper-heuristic and thus the same as a genetic programming 
hyper-heuristic. The benefit of the proposed gene 
expression programming framework is its ability to use the 
current problem state to generate, for each instance, 
different high level heuristic in an on-line manner which 
could help the search in coping with the changes that might 
happen during the instance solving process.  
 

IV. THE PROPOSED FRAMEWORK  

The proposed hyper-heuristic framework has two levels 
called high level and low level heuristics. The high level 
heuristic contains two components, a heuristic selection 
mechanism and an acceptance criterion. The low level 
heuristic contains a set of perturbative low level heuristics, 
the memory mechanism and the objective function. The 
proposed hyper-heuristic starts with an initial solution, 
randomly selected from the memory mechanism, and 
iteratively explores its neighborhood by applying a 
perturbative low level heuristic. Given a pool of 
perturbative low level heuristics, a complete solution 
(randomly selected from the memory mechanism) and the 
objective function, the proposed hyper-heuristic framework 
will successively invoke the following steps for a certain 
number of iterations (defined by the user):  
 

i) Call the heuristic selection mechanism to select, 
from a given pool, one perturbative low level 
heuristic.  

ii) Randomly selects one solution for the memory 
mechanism. 

iii) Apply the selected perturbative low level heuristic to 
the given solution to generate a new solution.  

iv) Call the objective function to evaluate the generated 
solution. If it is better than the incumbent solution, 
replace it with the incumbent solution and continue 
the search. If not, call the acceptance criterion to 
decide either to accept or reject the generated 
solution according to the acceptance criterion rules.  
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i) Crossover: exchanges elements between two randomly 
selected genes from the chosen parents (e.g., one-point 
and two point crossover).  

ii) Mutation: change any string in the generated individual 
while making sure that the string in the head part can 
be changed into both terminal and function and, string 
in the tail part can be changed into terminals only.  

iii) Inversion: reveres small sequence of strings within the 
head or tail.  

iv) Convert the created individuals (offsprings) to program 
trees and execute them on the underlying problem to 
calculate their fitness values. 

v) Following roulette wheel (or other selection operators) 
sampling with elitism, the fittest individuals are always 
copied into the next generation.  

This process is executed until the stopping condition is 
satisfied (e.g. a given number of generations). 
 
2) The proposed gene expression programming framework 
to generate the high level heuristic components  
In this work, we propose a gene expression programming 
framework to automatically generate the high level 
heuristic selection mechanism and the acceptance criteria, 
based on a given problem instance, for the perturbative 
heuristic to choose heuristic hyper-heuristic framework. 
This is an on-line heuristic generation method based hyper-
heuristic which iteratively evolves a population of 
individuals through the evolution process. Each individual 
represents a set of rules which are decoded into a selection 
mechanism and acceptance criterion to be used by the 
hyper-heuristic framework. To simultaneously generate 
both selection mechanism and the acceptance criterion, 
each individual is divided into two parts of equal size to 
represent both components. For example, in a individual of 
m strings, strings 1 to m/2 will be used for the selection 
mechanism and strings m/2 to m will be used for the 
acceptance criterion. Each part has a head of a user defined 
length h (contains terminal and function) and a tail 
(contains terminal only) of length t=h*(n-1) +1, where n 
represent the maximum number of function arguments. 
Each part employs the head-tail encoding method which 
ensures the validly of the generated program which 
represents one expression tree for the selection mechanism 
and acceptance criterion, respectively.  

Except crossover, genetic operators (mutation and 
inversion) can occur at any point as long as the gene rules 
are respected, i.e., a head element can be changed into 
terminal or function, whilst, a tail element can be changed 
into terminal only. Crossover operators will exchange 
elements between two randomly selected genes from the 
chosen parents within the same parts. For example, if the 
selected genes are from the first part of the first individual, 
these genes will be replaced with those in the first part of 
the second individual. This will ensure that the exchanged 
genes are the same types, i.e., either for the selection 
mechanism or the acceptance criterion.  
To run the proposed gene expression programming 
framework, one needs to define the following components:  
 

1- Terminal and function sets   

A crucial issue in the design of the proposed framework 
is the definition of the terminal set (T) and the function 
set (F). The terminal set (T) represents a set of variables 
which will express the state of the underlying problems. 
The function set (F) represents a set of arithmetic or 
logical operators that will be used to connect or 
compose the terminal set (T). To use the proposed 
framework across various problems, we keep the 
definition of the terminal set (T) and function set (F) as 
general and simple as possible. By doing so, the 
proposed framework can be used across other problem 
domains, in addition to those considered in this work.  
Since the purpose of the heuristic selection mechanism 
is fundamentally different from the acceptance criterion, 
we use two terminal sets. The first set represents the 
selection mechanism, whilst, the second represents the 
acceptance criterion.  

To cope with instance changes that might happen 
during the instance solving process, the proposed 
framework utilizes several evaluation criteria to 
represent the terminal sets in such a way that their 
combination will favor one criterion among others and 
these evaluation criteria will be updated during instance 
solving. Each evaluation criterion favors the selection of 
the low level heuristic from a different perspective. The 
rationale behind this is that some low level heuristics 
perform well only at the beginning of the search process 
while others could be better at the end of the process. 
Therefore, the heuristic selection mechanism should be 
able to quickly respond to instance landscape changes 
by selecting the appropriate low level heuristic. The 
function (F) and terminal (T) sets of the selection 
mechanism that have been used in this work are 
presented in Table 1. The utilized terminals for the 
heuristic selection are: 

 
- Reward credit (RC):  The main idea of this reward is 

that infrequently used low level heuristics which lead 
to a large improvement in the solution quality are 
preferred to be selected more than those that lead to a 
small improvement. Thus, as a result, the low level 
heuristic which brings frequent, but small 
improvements will get less reward and consequently 
has a lesser chance of being preferred [13]. This 
terminal is good in reducing the heuristic search 
space by only favoring certain low level heuristics.  

- Update the best known solution counter (Cbest): This 
terminal favors the low level heuristic that manage to 
update the best known results. This terminal is good 
in systematically improving the current local optima.  

- Update the counter of accepting current solution 
(Ccurrent): This terminal favors the low level heuristic 
that manages to update the current solution. This 
terminal is good in keeping the search focused 
around the current local solution.  

- Update counter of accept solution (Caccept): This 
terminal favors the low level heuristic that produces 
a solution that is accepted by the acceptance 



criterion. This terminal is good in helping the search 
to escape from a local optima.  

- Update the average improvement counter (Cava): This 
terminal favors the low level heuristic that has made 
a large improvement on average. This terminal is 
good at focusing the search on the current area in the 
search space.   

- Update the first rank counter (Cr): This terminal 
favors the low level heuristic that has been selected 
first. This terminal is good for applying the current 
low level heuristic. 
 

Please note that the terminal (T) set of the heuristic 
selection mechanism is used for the low level heuristic 
and their value together with function (F) set are used 
to rank the low level heuristics. 
 

TABLE 1 THE TERMINAL AND FUNCTION SET OF THE 
SELECTION MECHANISM 

Terminals set for the heuristics selection mechanism
terminal description 

RC The extreme value-based reward is used to 
calculate the credit (CA) for each low level 
heuristic. When the i-th low level heuristic is 
applied, its corresponding improvement to the 
current solution is computed. The improvement 
gained is then saved for the i-th low level 
heuristic in a sliding time window of size W, 
following the rule of FIFO. The credit of any 
low level heuristic is then set as the maximum 
value in its corresponding sliding window W. 
In this work, the improvement gained (PI) from 
the i-th low level heuristic is calculated as 
follows: PI(i) =(/f1-f2/f1)*100 if f2<f1. Where 
f1 is the quality of the current solution and f2 is 
the quality of the resultant solution after 
applying the i-th low level heuristic. 

Cbest The number of times that the i-th low level 
heuristic has updated the best known solution. 

Ccurrent The number of times that the i-th low level 
heuristic has updated the current solution. 

Caccept The number of times that the generated solution 
by the i-th low level heuristic has been accepted 
by the acceptance criterion. 

Cava The average of the previous improvement 
strength of the i-th low level over the search 
process. 

Cr The number of times that the i-th low level 
heuristic has been ranked the first. 

 
Function set for the heuristics selection mechanism

function description 
+ Add two inputs. 
- Subtract the second input from the first one. 
* Multiply two inputs. 
% Protected divide function, i.e., change the 

division by zero into 0.001. 

 
The function (F) and terminal (T) sets of the 
acceptance criteria that have been used in this work are 
presented in Table 2. 

 
 

TABLE 2 THE TERMINAL AND FUNCTION SET OF THE 
ACCEPTANCE CRITERIA 

Terminals set for the acceptance criteria mechanism 
terminal description  

delta The change in the solution quality 

PF The quality of the previous solution 
CF The quality of the current solution 
CI Current iteration 
TI Total number of iterations 

 
Function set for the acceptance criteria mechanism

function  description  
+ Add two inputs. 
- Subtract the second input from the first one. 
* Multiply two inputs. 
ex The result of the child node is raised to its power 

(Euler’s number). 
% Protected divide function, i.e., change the 

division by zero into 0.001. 

 
2- Fitness function  

The aim of the fitness function is to evaluate the 
performance of the generated high level heuristics 
(population individual). In this work, we use the idea in  
[22] that was used to control the population size in an 
evolutionary algorithm to evaluate the fitness of the 
generated high level heuristics. The probability of 
selecting each high level heuristic (an individual in the 
GEP framework) is updated according to the quality of 
the best solution returned, after the stopping condition 
is satisfied. The quality of the returned solution is 
usually either better or worse than the one that has been 
used as an input solution for the hyper-heuristic 
framework. Formally, let Ah[] represent the array of 
the probability of selecting the high level heuristics 
(individual), fi and fb represent the fitness of the initial 
and returned solutions, NoH represents the number of 
high level heuristics (individuals) or the population size 
of GEP. Then, if the application of the i-th high level 
heuristic leads to an improvement in the solution 
quality, then reward the i-th high level heuristic 
(individual) as follows: Ah[i] = Ah[i]+∆  where ∆ = (fi - 
fb) / ( fi + fb). Other high level heuristics,  j{1,…, 

NoH} and j ≠ i, are penalized as Ah[j] = Ah[j] - 
(∆/(NoH-1)). Otherwise (if the solution cannot be 
improved), then penalize the i-th high level heuristic, 
Ah[i]= Ah[i]-|(∆*α)| where α= Current_Iteration / 
Total_Iteration and reward other high level heuristics, 
 j{1,…, NoH} and j ≠ i, Ah[j] =Ah[j] + 

(|∆|*α/(NoH-1)). Please note that the main idea behind 
decreasing the probability of other high level heuristic 
is to decrease their chances of being selected. Initially, 
the probability of each high level heuristic (individual) 
is calculated by translating them into expression trees 
and executing the corresponding program. 
 
3- The stopping condition  

In this work, the maximum number of consecutive non 
improvement iterations is used as the stopping 
condition (see section V.A). 

 
When all elements are defined, the proposed framework is 
carried out as follows (see Fig. 6):  
 

i) Generate a population of individuals.   



ii) Calculate the fitness of the population by inserting 
them into the hyper-heuristic framework and using it 
to solve a given instance for a certain number of 
iterations.  

iii) Iteratively selects two parents, apply crossover and 
mutation operators to generate two offspring, 
evaluate the fitness of the generated offspring and 
update the population. This is executed for a certain 
number of generations.  

 
The main role of GEP is to evolve a population of 
individuals, each encoding a high level heuristic (selection 
mechanism and acceptance criterion) which will be used by 
the hyper-heuristic framework. The hyper-heuristic 
framework will be called at every generation to evaluate the 
generated offspring. When the proposed hyper-heuristic is 
called the following steps will be carried out:  
 

i) Decoded the current individual into a heuristic 
selection mechanism and an acceptance criterion, 
i.e., translate it into two expression trees for the 
selection mechanism and the acceptance criterion, 
respectively. Then, use the terminal (T) set value of 
each low level heuristic as the input for the selection 
mechanism expression tree.  

ii) Execute the selection mechanism expression tree and 
rank the given set of low level heuristics from the 
highest to the lowest based on the value retuned from 
the expression tree.  

iii) Randomly select one solution for the memory 
mechanism. Apply the highest ranked low level 
heuristic to the given solution and calculate the 
quality of the generated solution.  

iv) If the generated solution is better than the current 
one, the current one is replaced. If not, the hyper-
heuristic will call the acceptance criterion expression 
tree and execute the corresponding program. Then, 
the generated solution by the low level heuristic is 
accepted if the exponential of the value retuned by 
the acceptance criterion expression tree is less or 
equal to 0.5 (the exp function returns values between 
0 and 1). In the literature, a value of 0.5 was 
suggested [26], but for different domains. The value 
0.5 was also determined based on preliminary 
testing.  

v) Repeatedly apply the current low level heuristic until 
no improvement is returned. 

vi) If no improvement is returned, the hyper-heuristic 
framework will stop applying the current low level 
heuristic and restarts from the local optimum 
obtained by current low level heuristic, but with next 
low level heuristic in the ranked list. 

vii) If the hyper-heuristic framework reaches the end of 
the low level heuristic ranked list, it executes the 
current heuristic selection mechanism expression tree 
again and rank the given set of low level heuristics 
and restart the search from the local optimum, but 
using the current highest ranked low level heuristic.  

viii) The proposed hyper-heuristic framework will keep 
using the utilized high level heuristic components 

(selection mechanism and acceptance criterion), 
which is generated by the GEP framework, for a pre-
defined number of iterations (see section V. A).  

 

Fig. 6. The proposed hyper-heuristic 

B. Low level heuristics  

The low level heuristic of the proposed hyper-heuristic 
framework has three components as follows: 
 
1) A set of perturbative low level heuristics 
In this work, a pool of problem-specific perturbative 
heuristics is used as low level heuristics.  The aim of the 
low level heuristics is to explore the neighborhoods of the 
current solution by altering the current solution 
(perturbation). The generated neighborhood solution is 
accepted if it does not break the imposed hard constraints 
and also satisfies the acceptance criterion. Thus, the 
employed low level heuristic explores only the feasible 
search space. Details of these perturbative heuristics are 
presented in the problem description sections (see section 
V.C).  
 
2) Memory mechanism  
Most hyper-heuristic frameworks that have been proposed 
in the scientific literature operate on a single solution [4], 
[19]. Reliance on a single solution may restrict their ability 
in dealing with a large and heavily constrained search 
space, as it is widely known that single solution based 
methods are not well suited to cope with the large search 
spaces and heavily constrained problems [10]. In order to 
enhance the efficiency of the proposed hyper-heuristic 
framework and to diversify the search, we embed it with a 
memory mechanism as in [38] which contains a collection 
of both high quality and diverse solutions, updated as the 
algorithm progresses. The integrated memory mechanism 



interacts with the high level heuristic as follows: first 
initialize the memory mechanism by generating a set of 
diverse solutions (randomly or by using a heuristic method, 
see Section V). For each solution, associate a frequency 
matrix to measure solution diversity. The frequency matrix 
stores the frequency of an object assigned to the same 
location. At every iteration, the high level heuristic will 
randomly select one solution from the memory; apply the 
selected low level heuristic to this solution, update both the 
solution in memory and the solution frequency matrix.  

The associated frequency matrix is represented by a two 
dimensional array where rows represent objects and 
columns represent locations. For example, in the bin 
packing problem, the frequency matrix stores how many 
times the item has been assigned to the same bin. Whilst, in 
the vehicle routing problem, it stores how many times a 
customer has been assigned to the same route. In this work, 
objects represent the items in the bin packing problem or 
customers in the vehicle routing problem, while locations 
represent bins in the bin packing problem and routes in the 
vehicle routing problems.  

Fig. 7 shows an example of a solution and its 
corresponding frequency matrix. The frequency matrix is 
initialized to zero. We can see five objects (represented by 
rows, items or customers) and there are five available 
locations (represented by columns, bins or routes). The 
solution on the left side of Fig. 7 can be read as follows: 
object 1 is assigned to location 1, object 2 is assigned to 
location 3, etc. The frequency matrix on the right side of 
Fig. 7 can be read as follows: object 1 has been assigned to 
location 1 twice, to location 2 three times, to location 3 
once, to location 4 four times and to location 5 once; and so 
on for the other objects.  
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 solution  frequency matrix 

Fig. 7. Solution and its corresponding frequency matrix. 

If any solution is used by the hyper-heuristic framework, 
then we update the frequency matrix of this solution. Next 
we calculate the quality and the diversity of this solution. In 
this work, the quality represents the quality of the solution 
of a given instance (see section V). The diversity is 
measured using the entropy information theory (see 
Equations (1) and (2)) as follows [38]: 
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Where  
- eij is the frequency of allocating object i to location j. 
- m is the number of objects. 

- εi is the entropy for object i. 
- ε is the entropy for one solution (0 ≤ εi≥ 1).  

Next, add the new solution to the memory mechanism by 
considering the solution quality and diversity.   
 
3) Objective function 
The objective function is problem dependent and it 
measures the quality of the generated solution (see section 
V). 

V. EXPERIMENTAL SETUP 

In this section, we will discuss the parameter settings of 
GEP-HH, problem description and the perturbative low 
level heuristics of the considered problems. 

A. GEP-HH Parameter Settings  

Fine tuning the algorithm parameters for optimal 
performance is usually a tedious task that needs 
considerable expertise and experience [6]. Therefore, the 
parameter values of the GEP-HH are obtained by using 
Relevance Estimation and Value Calibration method 
(REVAC) [39]. REVAC is a tool for parameter 
optimization, where a steady state genetic algorithm and 
entropy theory are used in defining algorithm parameter 
values. REVAC is utilized to find the generic values that 
can be used for all considered domains instead of finding 
the optimal one which is problem (if not instances) 
dependent.  

Taking into consideration the solution quality and the 
computational time needed to achieve good quality 
solutions, the running time for each instance is fixed to 20 
seconds and the number of iterations performed by REVAC 
is fixed at 100 iterations (see [39] for more details). To do 
so, we tuned GEP-HH for each domain separately and then 
used the average of the minimum value for each parameter 
obtained by REVAC for all tested instances. Then the 
average values over all tested instances for all domains for 
each parameter are set as the generic values for GEP-HH. 
Table 3 lists the parameter settings of GEP-HH that have 
been used for all problem domains.  

 
TABLE 3 GEP-HH PARAMETERS 

Parameters 
Possible 
Range  

Suggested Value by 
REVAC 

Population size 5-50 10 
Number of generations 10-200 100 
One point crossover 
probability 

0.1-0.9 0.7 

Mutation probability 0.1-0.9 0.1 
Inversion rate 0.1-0.9 0.1 
Head length h 2-40 5 
Selection mechanism - Roulette Wheel 

Crossover type 
Two/multi/ 
one point 

One point 

Consecutive non 
improvement 

1-1000 50 

The sliding window size 
W 

2-100 20 

Memory mechanism size 2-40 8 

 



B. Problem Description  

In this work, we used HyFlex (Hyper-heuristics Flexible 
Framework) to test the generality and the performance of 
GEP-HH. HyFlex is a java framework which provides six 
problem domains (boolean satisfiability (MAX-SAT), one 
dimensional bin packing, permutation flow shop, personnel 
scheduling, traveling salesman and vehicle routing), the 
initial solution generation method, and a set of  perturbative 
low level heuristics [23]. HyFlex was used during the cross-
domain heuristic search challenge competition (CHeSC) in 
order to compare the performance of hyper-heuristic 
methods and to support researchers in their efforts to 
develop generally applicable hyper-heuristics for various 
problem domains. In addition, we also report in the 
appendix, the results of testing GEP-HH on exam 
timetabling and dynamic vehicle routing problems (See the 
supplementary file).  
 
1) Boolean Satisfiability (MAX-SAT) Problems 
Boolean Satisfiability problems can be defined as follows 
[40]: given a formula of Boolean variables, determine the 
assignment of truth values to the variables that can make 
the formula true. MAX-SAT, which is an extension of 
Boolean Satisfiability, is an optimization problem where the 
aim is to determine the maximum number of true clauses of 
a given Boolean formula. In other words, the aim of the 
optimization process is to minimize the number of 
unsatisfied clauses in a given formula. The instances that 
were considered in this work are summarized in Table 4. 
The set of initial solutions are randomly generated by 
assigning either true or false value to each variable. The 
quality of the solution is measured based on how many 
`broken' clauses in a given formula i.e., those which 
evaluate to false. See [40] for more details. 

 
TABLE 4 THE MAX-SAT INSTANCES  

Instances Name Variables Clauses 
Instance 1 parity-games/instance-n3-i3-pp 525 2276 
Instance 2 parity-games/instance-n3-i4-pp-

ci-ce 
696 3122 

Instance 3 parity-games/instance-n3-i3-pp-
ci-ce 

525 2336 

Instance 4 jarvisalo/eq.atree.braun.8.unsat 684 2300 
Instance 5 highgirth/3SAT/HG-3SAT-

V300-C1200-4 
300 1200 

 
2) One Dimensional Bin Packing Problems 
The one dimensional bin packing is a well-known 
combinatorial optimization problem. Given a set of items of 
a fixed weight and a finite number of bins of fixed capacity, 
the goal is to pack all items into as few bins as possible 
[41]. The packing process should respect the following 
constraints: each item should be assigned to one bin only 
and the total weight of items in each bin should be less or 
equal to the bin capacity. The aim of the optimization 
process is to minimize the number of bins that are used. 
Table 5 shows the characteristic of the considered 
instances. The set of initial solutions are generated as 
follows: first, generate a random sequence of items and then 
pack them one by one into the first bin which they will fit, 
i.e. “first fit heuristic”. The quality of solution is measured 

by quality= 
2

1

1
1   








n

i C

fl

n
where n is the number of 

bins, fl is the sum of the sizes of all the pieces in bin i, and 
C the bin capacity. See [41] for more details. 
 

TABLE 5 THE ONE DIMENSIONAL BIN PACKING INSTANCES 
Instances Name Capacity No. Pieces 
Instance 1 triples2004/instance1 1000 2004 
Instance 2 falkenauer/u1000-01 150 1000 
Instance 3 test/testdual7/binpack0 100 5000 
Instance 4 50-90/instance1 150 2000 
Instance 5 test/testdual10/binpack0 100 5000 

 
3) Permutation Flow Shop Problems  
The permutation flow shop problem is defined as, while 
respecting the imposed constraints, find the sequence for a 
set of jobs to be processed on a set of consecutive machines 
with the minimal completion time of the last job to exit the 
shop [42]. Each job requires a processing time on a 
particular machine. One machine can only process one job 
at a time. Jobs can be processed by only one machine at a 
time. The job ordering process should be respected and 
machines are not allowed to remain idle when a job is ready 
for processing. Table 6 shows the characteristic of the 
considered instances. The set of initial solutions are 
generated by using the NEH [42] algorithm which works as 
follows: first generate a random permutation of jobs and an 
empty schedule. Then, assign the first job in the 
permutation sequence into the schedule, second job into 
places 1 and 2; third job into places 1, 2 and 3, and so on. 
Each assignment should be fixed where the partial schedule 
has the smallest makespan time, i.e. completion time of the 
last job. The quality of solution represents the completion 
time of the last job in the schedule. See [42] for more 
details. 

 
TABLE 6 THE PERMUTATION FLOW SHOP INSTANCES 

Instances Name No. jobs No. Machines 
Instance 1 100x20/2 100 20 
Instance 2 500x20/2 500 20 
Instance 3 100x20/4 100 20 
Instance 4 200x20/1 200 20 
Instance 5 500x20/3 500 20 

 
4) Personnel Scheduling Problems  
Personnel scheduling is a well-known NP-hard problem. 
Given a set of employees of specific categories, a set of pre-
defined periods (shifts) on a working day, and a set of 
working days; the aim of the optimization process is to 
assign each employee to specific planning periods to meet 
the operational requirements and satisfying a range of 
preferences as much as possible [43]. Due to the variety of 
hard and soft constraints, which are different from one 
organization to another, the modeling and implementation 
is challenging. A unique general mathematical model to 
accommodate all related constraints does not exist. Table 7 
gives the characteristics of the considered instances. The set 
of initial solutions are created by using a neighborhood 
operator which incrementally adds new shifts to the roster 
until all employees have been scheduled. The quality of the 



generated solutions is assessed based on how many soft 
constraints are satisfied. See [43] for more details. 

 
TABLE 7 THE PERSONNEL SCHEDULING PROBLEMS INSTANCES 
Instances Name Staff Shift Types Days 
Instance 1 Ikegami-3Shift-DATA1.2 25 3 30 
Instance 2 MER-A 54 12 42 
Instance 3 ERRVH-B 51 8 42 
Instance 4 BCV-A.12.1 12 5 31 
Instance 5 ORTEC01 16 4 31 

 
5) Traveling Salesman Problems 
The traveling salesman problem is a very popular 
combinatorial optimization problem [44]. In its classic 
form, given a set of cities and their positions (pairwise 
distances), the aim is to find the shortest path where each 
city is visited only once and the path ends at the starting 
city. The aim of the optimization process is to minimize the 
traveling distance. Table 8 gives the characteristics of the 
considered instances. The set of initial solutions are created 
by randomly generating permutation sequences. The quality 
of solution is represented by the total distance of the route. 

 
TABLE 8 THE TRAVELING SALESMAN INSTANCES 

Instances Name No. Cities 
Instance 1 pr299 299 
Instance 2 usa13509 13509 
Instance 3 rat575 575 
Instance 4 u2152 2152 
Instance 5 d1291 1291 

 
6) Vehicle Routing Problems 
The vehicle routing problem is a well-known challenging 
combinatorial optimization problem [45]. Given a set of 
customers associated with demand and serving time, and a 
fleet of vehicles with a maximum capacity, the aim is to 
design a least cost set of routes to serve all customers, 
where each vehicle starts and ends at the depot, the total 
demand of each route does not exceed the vehicle capacity, 
each customer is visited exactly once by exactly one vehicle 
during its time window(s). Table 9 shows the characteristics 
of the considered instances. The set of initial solutions are 
generated as follows: first create an empty route, then loop 
through all customers and add any one to the current route 
that does not violate any constraints. If no customer can be 
added to the current route, create a new route. The process 
is repeated until all customers have been assigned to a 
route.  The quality of solution represents the total travel 
distance. 

 
TABLE 9 THE VEHICLE ROUTING PROBLEMS INSTANCES 

Instances Name 
No. 

Vehicles 
Vehicle 

Capacity 
Instance 1 Homberger/RC/RC2-10-1 250 1000 
Instance 2 Solomon/RC/RC103 25 200 
Instance 3 Homberger/C/C1-10-1 250 200 
Instance 4 Solomon/R/R101 25 1000 
Instance 5 Homberger/RC/RC1-10-5 250 200 

 

C. The perturbative low level heuristics  

HyFlex provides, for each of the considered problems, a set 
of different perturbative low level heuristics. The set of 

perturbative low level heuristics are classified into four 
types as follows:  

- Mutational or perturbation heuristics: generate a new 
solution by modifying the current solution by changing, 
removing, swapping, adding or deleting one solution 
component. Mutation intensity is controlled by α, 0<= α 
<=1.  

- Ruin-recreate (destruction-construction) heuristics: 
destroy part of the current solution and recreate it in a 
different way to generate a new solution. The difference 
between ruin-recreate and mutational heuristics is that the 
ruin-recreate can be seen as large neighborhood 
structures and they use problem specific construction 
heuristics to recreate the solutions.  

- Hill-climbing or local search heuristics: iteratively 
perturb the current solution, only accepting improving 
solutions, until a local optimum is found or a stopping 
condition is satisfied. The difference between hill-
climbing and mutational heuristics is that hill-climbing is 
an iterative improvement process, accepting only 
improving solutions. The depth of search is controlled by 
β, 0<= β <=1. 

- Crossover heuristics: take two solutions and produce a 
new one by combining them. 

Table 10 shows the total number of each type of the 
perturbative low level heuristics for the six problem 
domains [23].  
 

TABLE 10 HYFLEX LOW LEVEL HEURISTIC TYPES  
# Problem domains M R&R HC Xover Total 
1- Boolean Satisfiability 4 1 2 2 9 
2- One Dimensional Bin 

Packing 
3 2 2 1 8 

3- Permutation Flow Shop 5 2 4 3 15 
4- Personnel Scheduling 1 3 4 3 12 
5- Traveling Salesman 5 1 6 3 15 
6- Vehicle Routing 4 2 4 2 12 
Note: M: mutation. R&R: Ruin-recreate. HC: Hill-climbing. Xover:  
Crossover 

VI. COMPUTATIONAL RESULTS AND DISCUSSION 

This section is devoted to assess the performance of GEP-
HH against other hyper-heuristic methods in the literature. 
Our aims are: 
 
- To assess the benefit of integrating the memory 

mechanism within GEP-HH. 
- To test the generality and consistency of GEP-HH over 

six different problem domains and compare it to the state 
of the art of hyper-heuristic methods.  

In this work, we have carried out, for each problem domain, 
two sets of experiments:  
i) The first one compares the performance of the GEP-HH 

with the memory mechanism (GEP-HH) against GEP-
HH without the memory mechanism (denoted as GEP-
HH*) using the same parameter values and 
computational resources.  

ii) The second evaluates the performance of GEP-HH 
against the top five hyper-heuristics of the first cross-



domain heuristic search challenge (CHeSC) [23]. These 
are: AdapHH [34], VNS-TW [46], ML [47], PHUNTER 
[48] and EPH [49].  

 
Following CHeSC, rules and in order to make the 
comparison as fair as possible, for both experimental tests, 
the execution time is used as the stopping condition. It is 
determined by using the benchmark software provided by 
the organizers to ensure fair comparisons between 
researchers using different platforms [23]. We have used 
this software to determine the allowed execution time using 
our computer resources (i.e. 10 minutes on the benchmark 
machine).  
 The best, average, standard deviation and median of 
GEP-HH and GEP-HH* over independent 31 runs 
(adhering to the CHeSC competition rules) are reported for 
each instance. In addition, the percentage deviation from 
the best known value found in the hyper-heuristic literature 
is also calculated for each instance as follows:   

%
*

*
(%)

best

bestbest HHGEP 
     (3) 

where bestGEP-HH is the best result returned over 31 
independent runs by GEP-HH and best* is the best result 
obtained by other hyper-heuristic methods.  

To demonstrate the generality, consistency and the 
effectiveness of GEP-HH across all tested problem 
domains, we have compared the performance of GEP-HH 
against GEP-HH* and existing hyper-heuristic methods 
based on generality, consistency, efficiency, statistical test 
and formula one (see [30]  for more details).  

A. The computational results of GEP-HH compared to 
GEP-HH* 

The first set of experiments presents the comparison 
between GEP-HH and GEP-HH* across all of the six 
considered problems. Each problem domain contains 5 
instances and the total number of tested instances is 30. The 
computational results of GEP-HH and GEP-HH* over 31 
independent runs for the six problems are summarized in 
Table 11.  

Observing the results reported in Table 11, we can make 
the following observations: in terms of solution quality, 
GEP-HH outperformed GEP-HH* on 18, tieing with GEP-
HH* on 11 and being inferior on 1 (MAX-SAT Instances 4) 
out of 30 instances of the considered problem domains. 
From the average results perspective, it is clear that, across 

all instances of the considered problems domains, GEP-HH 
is the overall best.  

In addition to the solution quality and the average results, 
it is natural to ask how consistent GEP-HH is, i.e., how 
likely GEP-HH would perform well over multiple runs on 
each instance compared to GEP-HH*. This question can be 
answered by analyzing the standard deviation and the 
median over 31 runs as well as the box-plots of solution 
distributions. In general, the standard deviation produced by 
GEP-HH is smaller than those from GEP-HH* for all 
instances of the considered problem domains (except PS 2 
in Table 11). From the median perspective, we can draw the 
following conclusion: GEP-HH obtained better median 
results for 19, tieing on 3 and being slightly worse than 
GEP-HH* on 8 out of 30 instances of the considered 
problem domains. To save space, the box-plot figures (Figs. 
8 to 13) are presented in the supplementary file. Figs. 8 to 
13 show the box-plot of results distribution of GEP-HH and 
GEP-HH* for all instances of the considered problem 
domains, where one can clearly see that, for most instances, 
GEP-HH is more consistent than GEP-HH*. This indicates 
that GEP-HH is more consistent than GEP-HH* across all 
tested problem domains. 

In addition to the above results, it is worth drawing some 
statistical significant conclusions regarding the performance 
of GEP-HH and GEP-HH*.  Therefore, the Wilcoxon test 
(pairwise comparisons) with significant level of 0.05 is 
performed. The p-value of the Wilcoxon test of GEP-HH 
versus GEP-HH* are presented in the last column of Table 
11. Where “S+” indicate GEP-HH is statistically better than 
GEP-HH* (p-value <0.05), “S-” indicate GEP-HH 
outperformed by GEP-HH* (p-value >0.05) and “~” 
indicate both algorithms have the same performance (p-
value =0.05). The results in Table 11 (last column) show 
that GEP-HH is statistically better than GEP-HH* on 23 
instances, not statistically better than GEP-HH* on 5 and 
perform the same as GEP-HH* on 2 instances out of 30 
tested instances of the considered problem domains.  

To summarize, the results demonstrate that GEP-HH is 
better than GEP-HH* in term of consistency, efficiency and 
generality (with regards to the tested instances of the 
considered problem domains). This is mainly due to the use 
of memory mechanism within GEP-HH which has a 
positive effect on the ability of GEP-HH in producing good 
quality and consistent results compared to GEP-HH*.  
 
 

 
TABLE 11 THE RESULT OF GEP-HH COMPARING TO GEP-HH* FOR ALL PROBLEM DOMAINS 

 Instances 
GEP-HH GEP-HH* GEP-HH vs. GEP-HH* 

Best Average Std Median Best Average Std Median p-value 

M
A

X
-S

A
T

 SAT 1 1 4.4 1.70 3 1 5.0 1.74 3 S+ 
SAT 2 1 13.0 11.01 3 5 20.4 13.73 5 S+ 
SAT 3 1 3.8 2.44 2 1 4.7 3.26 3 S+ 
SAT 4 4 8.0 4.60 4 1 12.3 6.78 8 S- 
SAT 5 7 7.8 0.88 7 7 10.3 3.20 8 S+ 

B
in

 P
ac

ki
ng

 BP 1 0.0131 0.029 0.013 0.0192 0.034 0.053 0.021 0.0168 S+ 
BP 2 0.0029 0.005 0.003 0.0032 0.0067 0.011 0.006 0.0036 S+ 
BP 3 0.0011 0.003 0.002 0.0039 0.0035 0.014 0.004 0.0038 S+ 
BP 4 0.1083 0.108 0.001 0.1083 0.1083 0.115 0.024 0.1085 S- 
BP 5 0.0031 0.015 0.010 0.0066 0.0031 0.027 0.016 0.0066 S+ 

F l FS 1 6212 6243.29 10.39 6245 6212 6283.12 89.57 6248 S+ 



FS 2 26721 26821 83.79 26898 26744 26887.9 85.12 26804 S+ 
FS 3 6285 6325.83 11.87 6326 6295 6335.83 16.25 6323 S+ 
FS 4 11320 11376.7 24.56 11377 11327 11377 27.12 11359 S+ 
FS 5 26530 26616 40.70 26634 26531 26638 50.37 26604 S+ 

P
er

so
n

ne
l 

Sc
he

d
ul

in
g PS 1 11 18.64 3.91 21 14 33.80 24.10 22 S+ 

PS 2 9345 10830.4 1660.5 9628 9345 11077.0 1403.8 9630 S- 
PS 3 3123 3312.16 83.10 3351 3124 3369.38 104.79 3231 ~ 
PS 4 1364 1541.48 86.52 1555 1378 1619.54 133.14 1590 S+ 
PS 5 280 306.54 14.25 315 290 322.45 27.03 320 S+ 

T
ra

ve
li

n
g 

Sa
le

sm
an

 TSP 1 48194.9 48222.72 38.41 48194.9 48194.9 48519.82 450.35 48194.9 S- 
TSP 2 20754969 21227727 255264 21268571 20910693 21536045 760071.4 21270792 ~ 
TSP 3 6796 6828.34 13.80 6810.5 6796.0 6868.6 54.98 6816.2 S+ 
TSP 4 65952.1 67118.9 493.71 67105.2 66448.2 67360.89 624.27 66898.2 S+ 
TSP 5 52050 54393.66 1015.18 54755.3 52052.7 55547.7 1879.55 54896.8 S+ 

V
eh

ic
le

 
R

ou
ti

ng
 VRP 1 58052.1 60046.3 1444.7 60720.0 67012.9 82505.9 5722.2 83094.9 S+ 

VRP 2  12261.0 12814.52 519.7 12337.9 12263.0 13639.4 907.4 13341.0 S+ 
VRP 3 142479.1 145294.4 1622.3 145418.9 142562.5 145664.7 1857.9 145329.9 S- 
VRP 4 20650.8 20653.6 1.3 20653.8 20650.8 20684.2 6.3 20683.5 S+ 
VRP 5 144258.1 148943.6 1365.3 149007.9 144258.1 149326.4 2488.1 149107.9 S+ 

 

B. The computational results of GEP-HH compared to 
other hyper-heuristic methods 

We now assess the performance GEP-HH versus the top 
five hyper-heuristic methods from the CHeSC competition 
[23] (AdapHH, VNS-TW, ML, PHUNTER and EPH) from 
the best and median results perspective. In addition, we 
have also included the results of GEP-HH* (without 
memory) in the comparison to assess its ability in 
producing good quality solutions compared to the top five 
hyper-heuristic methods from the CHeSC competition. 
Table 12 present the best, percentage deviation and 
instances ranking results for the six problems obtained by 
GEP-HH along with a comparison with respect to the best 
result of top five hyper-heuristic methods from the CHeSC 
competition. Please note that all the compared methods 
(GEP-HH, GEP-HH* and the top five hyper-heuristics) 
used the 10 minute execution time as the stopping condition 
which is determined by the benchmark software provided 
by the CHeSC organizers. 

The results in Table 12 suggest that, out of 30 instances, 
GEP-HH outperformed the top five hyper-heuristic methods 
on 12 instances, match the best results on 12 instances and 
is inferior on 6 instances. We can also remark that GEP-HH 
without memory mechanism (GEP-HH*) manages to 

produce new best results for 6 instances and tieing on 12 
out of 30 instances compared to the top five hyper-heuristic 
methods.  

In Table 13, we provide the median, percentage deviation 
and instances ranking results achieved by GEP-HH in 
comparison with the median results obtained by the top five 
hyper-heuristic methods from the CHeSC competition as 
well as GEP-HH* median results. It is clear from Table 13 
that, GEP-HH obtained better median results for 4 instances 
and tie with other hyper-heuristic methods on 8 out of 30 
instances. Table 13 also show that GEP-HH without 
memory mechanism (GEP-HH*) obtained better median 
results for 1 instance and matched the best in 6 out of 30 
instances of the considered problem domains.  

To summarize, even though GEP-HH did not manage to 
obtain the best results for all instances, the percentage 
deviation of these instances is, however, relatively small 
and GEP-HH achieved the second best and third best results 
for other instances. One can clearly see that both GEP-HH 
and GEP-HH* have generalized well across all tested 
domains and produced good quality results compared to the 
top five hyper-heuristic methods in the existing literature. 
 
 

 
TABLE 12 THE BEST RESULT OF GEP-HH and GEP-HH* COMPARING TO THE TOP FIVE HYPER-HEURISTICS 

  GEP-HH GEP-HH* The top five hyper-heuristic framework from CHeSC competition 
 Instances Best  ∆(%) Rank Best  AdapHH VNS-TW ML PHUNTER EPH 

M
A

X
-S

A
T

 SAT 1 1 0.0 1 1 1 1 1 1 4 
SAT 2 1 0.0 1 5 3 1 3 5 5 
SAT 3 1 0.0 1 1 1 1 1 2 2 
SAT 4 4 300 2 1 1 1 4 4 5 
SAT 5 7 0.0 1 7 9 7 7 7 7

B
in

 P
ac

ki
ng

 BP 1 0.0131 0 1 0.034 0.0131 0.0298 0.0323 0.0397 0.0430 
BP 2 0.0029 3.5 2 0.0067 0.0028 0.0036 0.0067 0.0034 0.0034 
BP 3 0.0011 175 2 0.0035 0.0004 0.0136 0.0124 0.0178 0.0080 
BP 4 0.1083 0 1 0.1083 0.1083 0.1087 0.1084 0.1088 0.1083
BP 5 0.0031 0 1 0.0031 0.0031 0.0238 0.0178 0.0318 0.0136 

F
lo

w
 S

h
op

 FS 1 6212 -0.03 1 6212 6214 6230 6226 6221 6232 
FS 2 26721 -0.06 1 26744 26757 26765 26744 26786 26738 
FS 3 6285 -0.2 1 6295 6303 6303 6304 6303 6309 
FS 4 11320 0.01 2 11327 11318 11333 11338 11336 11328 
FS 5 26530 -0.01 1 26531 26541 26535 26559 26600 26569 

l 
Sc he

PS 1 11 0.00 1 14 17 13 11 13 16 
PS 2 9345 -0.02 1 9345 9435 9347 9436 9624 9747 



PS 3 3123 -0.03 1 3124 3142 3124 3138 3142 3142 
PS 4 1364 1.03 2 1378 1448 1370 1384 1350 1469 
PS 5 280 -3.44 1 290 295 290 300 290 310 

T
ra

ve
li

ng
 

S
al

es
m

an
 TSP 1 48194.9 0.00 1 48194.9 48194.9 48194.9 48194.9 48194.9 48194.9

TSP 2 20754969 0.01 3 20910693 20752853.8 2084855.6 20793219.8 20754199.8 20941645.1 
TSP 3 6796 0.00 1 6796.0 6797.5 6796.0 6805.3 6796.0 6799.2 
TSP 4 65952.1 -0.009 1 66448.2 66277.1 66830.2 66428.2 66641.4 65958.6
TSP 5 52050 -0.006 1 52052.7 52383.8 52896.5 52626.7 52172.0 52053.4 

V
eh

ic
le

 
R

ou
ti

ng
 VRP 1 58052.1 0.0 1 67012.9 58052.1 68340.4 67622.1 61139.3 63932.2 

VRP 2  12261.0 -0.016 1 12263.0 13304.9 13298.1 13298.4 12263.0 13284.0 
VRP 3 142479.1 -0.02 1 142562.5 145481.5 144012.6 142517.0 143663.9 143510.8 
VRP 4 20650.8 0.0 1 20650.8 20652.3 20651.1 20651.1 20650.8 20650.8 
VRP 5 144258.1 -1.17 1 144258.1 146154.0 146513.6 146200.8 146472.9 145976.5 

 
 
 

TABLE 13 THE MEDIAN RESULT OF GEP-HH and GEP-HH* COMPARING TO THE TOP FIVE HYPER-HEURISTICS 
  GEP-HH GEP-HH* The top five hyper-heuristic framework from CHeSC competition 
 Instances Median ∆(%) Rank Median AdapHH VNS-TW ML PHUNTER EPH 

M
A

X
-S

A
T

 SAT 1 3 0.0 1 3 3 3 5 5 7 
SAT 2 3 0.0 1 5 5 3 10 11 11 
SAT 3 2 0.0 1 3 2 2 3 4 6 
SAT 4 4 33.3 2 8 3 3 9 9 15 
SAT 5 7 -12.5 1 8 8 10 8 8 13 

B
in

 P
ac

ki
n

g BP 1 0.0192 19.2 2 0.0168 0.0161 0.0370 0.0421 0.0479 0.0504 
BP 2 0.0032 -11.1 1 0.0036 0.0036 0.0072 0.0075 0.0036 0.0036 
BP 3 0.0039 8.3 2 0.0038 0.0036 0.0167 0.0146 0.0201 0.0113 
BP 4 0.1083 0 1 0.1085 0.1083 0.1088 0.1085 0.1091 0.1087 
BP 5 0.0066 88.5 2 0.0066 0.0035 0.0278 0.0218 0.0395 0.0224 

F
lo

w
 S

h
op

 FS 1 6245 0.08 2 6248 6240 6251 6245 6253 6250 
FS 2 26898 0.36 6 26804 26814 26803 26800 26858 26816 
FS 3 6326 0.04 2 6323 6326 6328 6323 6350 6347 
FS 4 11377 0.15 3 11359 11359 11376 11384 11388 11397 
FS 5 26634 0.12 3 26604 26643 26602 26610 26677 26640 

P
er

so
nn

el
 

S
ch

ed
ul

in
g PS 1 21 16.6 2 22 24 19 18 25 22 

PS 2 9628 0.0 1 9630 9667 9628 9812 10136 10074 
PS 3 3351 3.9 6 3231 3289 3223 3228 3255 3232 
PS 4 1555 -2.2 1 1590 1765 1590 1605 1595 1615 
PS 5 315 0.0 1 320 325 320 315 320 345 

T
ra

ve
li

ng
 

Sa
le

sm
an

 TSP 1 48194.9 0.0 1 48194.9 48194.9 48194.9 48194.9 48194.9 48194.9 
TSP 2 21041571 0.01 2 21270792 20822145.7 21042675.8 21093828.3 21246427.7 21064606.3 
TSP 3 6810.5 0.0 1 6816.2 6810.5 6819.1 6820.6 6813.6 6811.9 
TSP 4 67105.2 0.5 4 66898.2 66879.8 67378.0 66894.0 67136.8 66756.2 
TSP 5 54755.3 3.4 5 54896.8 53099.8 54028.6 54368.4 52934.4 52925.3 

V
eh

ic
le

 
R

ou
ti

ng
 VRP 1 60720.0 -0.20 1 83094.9 60900.6 76147.1 80671.3 64717.8 74715.8 

VRP 2  12337.9 0.3 2 13341.0 13347.6 13367.9 13329.8 12290.0 13335.6 
VRP 3 145418.9 0.05 2 145329.9 148516.8 148206.2 145333.5 146944.4 162188.5 
VRP 4 20653.8 0.01 2 20683.5 20656.6 21642.9 20654.1 20650.8 20650.8 
VRP 5 149007.9 0.23 4 149107.9 148689.2 149132.4 148975.1 148659.0 155224.7 

 

C. DISCUSSION 

The numerical results presented throughout this work 
demonstrate that, across six very different combinatorial 
optimization problems, GEP-HH achieved favorable results 
compared to the top five hyper-heuristic methods from the 
CHeSC competition. More importantly, out of the 30 
instances GEP-HH matched the best results for 12 instances 
and manages to obtain new best results for 12 instances. In 
all domains, the standard deviation and the percentage 
deviation of GEP-HH reveal that GEP-HH results are stable 
and very close to the best results obtained by other hyper-
heuristic methods. These results are also supported by 
statistical tests and box-plots of solution distribution. In 
order to compare the performance of GEP-HH against the 
top five hyper-heuristic methods from the CHeSC 
competition (AdapHH, VNS-TW, ML, PHUNTER and 

EPH) more accurately, we have conducted the following 
comparison: 
 
i) In the first comparison we used Formula one that was 

used in the CHeSC competition [23] to calculate the 
score of GEP-HH and the top five hyper-heuristic 
methods. Table 14 shows the overall rankings of GEP-
HH and the top five hyper-heuristic methods (the higher 
the better). We also included GEP-HH* in the 
comparisons. It is interesting to note that GEP-HH 
obtained the first rank, whilst, GEP-HH* obtained the 
third rank compared to the top five hyper-heuristic 
methods.  

TABLE 14 THE RANKING OF GEP-HH AND THE TOP FIVE HYPER-
HEURISTICS  

# Hyper-heuristics Score  
1- GEP-HH 167.03 



2- AdapHH 155.7 
3 GEP-HH* 130.43 
4- VNS-TW 110.2 
5- ML 101.33 
6- PHUNTER 63.83 
7- EPH 75.25 

 
ii) In the second comparison, we conducted a multiple 

comparison statistical tests between GEP-HH and the 
top five hyper-heuristic methods. To do so, we 
performed Friedman and Iman-Davenport tests with a 
critical level of 0.05 to detect whether there are 
statistical differences between the results of these 
methods. The p-value of Friedman (p-value = 0.000) 
and Iman-Davenport (p-value =0.000) are less than the 
critical level 0.05, which implies that there is a 
significant difference between the compared methods. 
As a result, we conducted a Friedman test to calculate 
the average ranking of each method. Table 15 
summarizes the average ranking (the lower the better) 
produced by the Friedman test for each method. It is 
obvious that, GEP-HH ranked the first, followed by 
AdapHH, GEP-HH*, ML, VNS-TW, PHUNTER and 
EPH. 

TABLE 15 THE AVERAGE RANK OBTIANED  
BY FRIEDMAN TEST 

# Hyper-heuristics Ranking 
1- GEP-HH 3.2333 
2- AdapHH 3.2667 
3- GEP-HH* 3.6833 
4- ML 3.8667 
5- VNS-TW 4.05 
6- PHUNTER 4.9333 
7- EPH 4.9667 

 

Overall, the advantages of the proposed framework are the 
ability to utilize the information about the current state 
during instance solving to automatically generate the 
heuristic selection mechanism and an acceptance criterion. 
Results demonstrate that it provides a general mechanism 
regardless of the nature and complexity of the instances and 
can be applied to other domains without many changes (i.e. 
the user only needs to change the low level heuristics). 
Applying a methodology to other problem domains or even 
different instances of the same problem usually requires a 
considerable amount of modification (e.g. change algorithm 
parameters or structures). Our GEP-HH provides automated 
heuristic method that can cope with not only different 
instances of the same problem, but we have demonstrated 
its generality across six different problem domains. We 
would hope that the proposed methodology would also 
generalize to other domains.  

VII. CONCLUSIONS  

In this work, we have proposed a new hyper-heuristic 
framework for combinatorial optimization problems. At the 
higher level, we have introduced a gene expression 
programming framework to automatically generate the high 
level heuristic of the hyper-heuristic framework. The 
proposed gene expression programming framework evolves 
a population of individuals and each one is decoded into a 

heuristic selection mechanism and an acceptance criterion. 
The evolved heuristic selection mechanism takes the 
current state as input (pervious performance) and decides 
which low level heuristic is to be applied. Then, the 
generated solution is accepted if it satisfies the evolved 
acceptance criterion. At the lower level, we employed a set 
of human designed perturbative low level heuristics to 
perturb the solution of a given instance. To diversify the 
search, we have embedded the proposed hyper-heuristic 
with a memory mechanism, which contains a set of high 
quality and diverse solutions, which are updated during the 
search.  

We have shown that gene expression programming 
algorithm can be effectively used to automatically generate 
the high level heuristics of the perturbative hyper-heuristic 
framework. The efficiency, consistency and the generality 
of GEP-HH is demonstrated across six challenging 
problems using HyFlex software. The experimental results 
demonstrate that GEP-HH achieves highly competitive 
results, if not superior, and generalizes well over six 
problem domains (MAX-SAT, one dimensional bin 
packing, permutation flow shop, personnel scheduling, 
traveling salesman and vehicle routing problems) when 
compared to GEP-HH without a memory mechanism as 
well as the top five hyper-heuristic methods from the 
CHeSC competition. The main contributions of this work 
are: 
 
1- The development of a GEP-HH hyper-heuristic 

framework that automatically generates, during instance 
solving process, the high level heuristic (heuristic 
selection mechanism and the acceptance criteria) of the 
improvement based hyper-heuristic framework.  
 

2- The development of a population based hyper-heuristic 
framework that uses a memory mechanism of a set of 
solutions, which is updated during the solving process to 
effectively diversify the search. 

 

3- The development of a hyper-heuristic framework that is 
not customized to specific problems class and can be 
applied to different problems without much 
development effort. 

In our future work, we intend to investigate the 
effectiveness of the GEP-HH across other combinatorial 
optimization problems. 
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