
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1



Abstract— Designing generic problem solvers that perform

well across a diverse set of problems is a challenging task. In this

work, we propose a hyper-heuristic framework to automatically

generate an effective and generic solution method by utilizing

grammatical evolution. In the proposed framework, grammatical

evolution is used as an online solver builder, which takes several

heuristic components (e.g. different acceptance criteria and

different neighborhood structures) as inputs and evolves

templates of perturbation heuristics. The evolved templates are

improvement heuristics which represent a complete search

method to solve the problem at hand. To test the generality and

the performance of the proposed method, we consider two well-

known combinatorial optimization problems; exam timetabling

(Carter and ITC 2007 instances) and the capacitated vehicle

routing problem (Christofides and Golden instances). We

demonstrate that the proposed method is competitive, if not

superior, when compared to state of the art hyper-heuristics, as

well as bespoke methods for these different problem domains. In

order to further improve the performance of the proposed

framework we utilize an adaptive memory mechanism which

contains a collection of both high quality and diverse solutions

and is updated during the problem solving process. Experimental

results show that the grammatical evolution hyper-heuristic, with

an adaptive memory, performs better than the grammatical

evolution hyper-heuristic without a memory. The improved

framework also outperforms some bespoke methodologies which

have reported best known results for some instances in both

problem domains.

Index Terms—Grammatical Evolution, Hyper-heuristics,

Timetabling, Vehicle Routing

I. INTRODUCTION

ombinatorial optimization can be defined as the problem

of finding the best solution(s) among all those available

for a given problem [1]. These problems are encountered

in many real world applications such as scheduling,

production planning, routing, economic systems and

Nasser R. Sabar and Masri Ayob are with Data Mining and Optimization

Research Group (DMO), Centre for Artificial Intelligent (CAIT), Universiti

Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
email:naserdolayme@yahoo.com, masri@ftsm.ukm.my

Graham Kendall and Rong Qu are with ASAP Research Group, School of

Computer Science, The University of Nottingham, Nottingham NG8 1BB,
UK. email: Graham.Kendall@nottingham.ac.uk, Rong.Qu@nottingham.ac.uk.

Nasser R. Sabar and Graham Kendall are with The University of Nottingham

Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
email: Graham.Kendall@nottingham.edu.my.

Copyright (c) 2012 IEEE. Personal use of this material is permitted. However,

permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

management [1]. Many real world optimization problems are

complex and very difficult to solve. This is due to the large,

and often heavily constrained, search spaces which make their

modeling (let alone solving) a very complex task [2]. Usually,

heuristic methods are used to solve these problems, as exact

methods often fail to obtain an optimal solution in reasonable

times. The main aim of heuristic methods, which provide no

guarantee of returning an optimal solution (or even near

optimal solution), is to find a reasonably good solution within

a realistic amount of time [3, 4]. Meta-heuristic algorithms

provide some high level control strategy in order to provide

effective navigation of the search space. A vast number of

meta-heuristic algorithms, and their hybridizations, have been

presented to solve optimization problems. Examples of meta-

heuristic algorithms include scatter search, tabu search,

genetic algorithms, genetic programming, memetic

algorithms, variable neighborhood search, guided local search,

GRASP, ant colony optimization, simulated annealing,

iterated local search, multi-start methods and parallel

strategies [3],[4].

Given a problem, an interesting question that comes to mind

is:

Which algorithm is the most suitable for the problem at

hand and what are the optimal structures and

parameter values?

The most straightforward answer to the above question might

be to employ trial-and-error to find the most suitable meta-

heuristic from the large variety of those available, and then

employ trial-and-error to determine the appropriate structures

and parameter values. While these answers seem reasonable,

in terms of the computational time involved, it is impractical

in many real world applications. Many bespoke meta-heuristic

algorithms that have been proposed over the years are

manually designed and tuned, focusing on producing good

results for specific problem instances. The manually designed

algorithms (customized by the user and not changed during

problem solving) that have been developed over the years are

problem specific, i.e. they are able to obtain high quality

results for just a few problem instances, but usually fail on

other instances even of the same problem and cannot directly

be applied to other optimization problems. Of course, the No

Free Lunch Theorem [5] states that a general search method

does not exist, but it does not mean that we cannot investigate

more general search algorithms to explore the limits of such

an algorithm [6-8].

Grammatical Evolution Hyper-heuristic for Combinatorial

Optimization problems

Nasser R. Sabar, Masri Ayob, Graham Kendall, Senior Member, IEEE and Rong Qu, Member, IEEE

C

mailto:pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

Numerous attempts have been made to develop automated

search methodologies that are able to produce good results

across several problem domains and/or instances. Hyper-

heuristics [6], meta-learning [9], parameter tuning [10],

reactive search [11], adaptive memetic algorithms [12] and

multi-method [13], are just some examples. The performance

of any search method critically depends on its structures and

parameter values [6]. Furthermore, different search

methodologies, coupled with different structures and

parameter settings may be needed to cope with problem

instances or different problem domains [9],[10]. A search may

even benefit from adapting as it attempts to solve a given

instance. Therefore, the performance of any search method

may be enhanced by automatically adjusting their structures or

parameter values during the problem solving process. Thus,

the ultimate goal of automated heuristic design is to develop

search methodologies that are able to adjust their structures or

parameter values during the problem solving process and work

well, not only across different instances of the same problem,

but also across a diverse set of problem domains [6], [9], [10].

Motivated by these aspects, particularly the hyper-heuristic

framework [6], in this work, we propose a grammatical

evolution hyper-heuristic framework (GE-HH) to generate

local search templates during the problem instance solving

process, as depicted in Fig 1.

Fig.1.The GE-HH framework

The evolved templates represent a complete local search

method which contains the acceptance criteria of the local

search algorithm (to determine away of escaping from local

optima), the local search structures (neighborhoods), and their

combination. The GE-HH operates on the search space of

heuristic components, instead of the solution space. In

addition, GE-HH also maintains a set of diverse solutions,

utilizing an adaptive memory mechanism which updates the

solution quality and diversity as the search progresses. We

choose grammatical evolution to search the space of heuristic

components due to its ability to represent heuristic

components and it being able to avoid the problem of code

bloat that is often encountered in traditional genetic

programming. Our objectives are:

- To design an automatic algorithm that works well

across different instances of the same problem and also

across two different problem domains.

- To merge the strengths of different search algorithms in

one framework.

- To test the generality and consistency of the proposed

method on two different problem domains.

The performance and generality of the GE-HH is assessed

using two well-known NP-hard combinatorial optimization

problems; examination timetabling (Carter [14] and ITC 2007

[15] instances) and the capacitated vehicle routing problem

(Christofides [16] and Golden [17] instances). Although both

domains have been extensively studied by the research

community, the reasons of choosing them are twofold. Firstly,

they represent real world applications and the state of the art

results, we believe, can still be improved. Currently, a variety

of algorithms have achieved very good results for some

instances. However, most methodologies fail on generality and

consistency. Secondly, these two domains have been widely

studied in the scientific literature and we would like to

evaluate our algorithm across two different domains that other

researchers have studied. Although our intention is not to

present an algorithm that can beat the state of the art, but

rather can work well across different domains, our results

demonstrate that GE-HH is able to update the best known

results for some instances.

 The remainder of the paper is organized as follows: the

generic hyper-heuristic framework and its classification are

presented in Section II. The grammatical evolution algorithm

is presented in Section III, followed by our proposed GE-HH

framework in Section IV. The experimental results and result

comparisons are presented in Section V and VI, respectively.

Finally discussions and concluding remarks are presented in

Sections VII and VIII.

II. HYPER-HEURISTICS

Meta-heuristics are generic search methods that can be applied

to solve combinatorial optimization problems. However, to

find high quality solutions, meta-heuristics often need to be

designed and tuned (as do many classes of algorithms,

including those in this paper) and they are also often limited to

one problem domain or even just a single problem instance.

The objective for a solution methodology that is independent

of the problem domain, serves as one of the main motivations

for designing hyper-heuristic approaches [6],[18].

Recently, significant research attention has been focused on

hyper-heuristics. Burke et al. [6] defined hyper-heuristics as

An automated methodology for selecting or generating

heuristics to solve hard computational search problems.

One possible hyper-heuristic framework is composed of two

levels, known as high and low level heuristics (see Fig.2).

The high level heuristic is problem independent. It has no

knowledge of the domain, only the number of heuristics that

are available and (non-domain) statistical information that is

allowed to pass through the domain barrier. Only the lower

part of the framework has access to the objective function, the

problem representation and the low level heuristics that have

	Grammatical Evolution Hyper-heuristic for Combinatorial Optimization problems .pdf

