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Abstract: Usually, meta-heuristic approaches that use several neighbourhood structures can perform better
than single neighbourhood structure. However, choosing a suitable neighbourhood structure to be applied
during the search process is also a crucial decision. Therefore, this study proposes an adaptive
neighbourhoods structure selection (AD-NS) mechanism that adaptively memorised the improvement strengths
for each neighbourhood structure. The neighbourhood structure with the best improvement history will be
employed to generate neighbour(s) for the current iteration. The hypothesis is, “if the improvement history of
neighbourhood structure can affect the performance of neighbourhood structures selection mechanism and
subsequently, the performance the applied meta-heuristic, then the meta-heuristic (1.e., Sunulated Annealing
(SA) 1n this case) with AD-NS will outperform the meta-heuristic (1.e., SA) with other neighbourhood structure
selection mechanisms”. To prove this, the experiment is conducted by applying SA with AD-NS, SA with
Token ring and SA with Union neighbourhood structure selection mechanisms; tested on Curriculum-Based
Course Timetabling problem for the ITC-2007 track3 benchmark datasets. Results based on the average ranked,
shows that SA with AD-NS approach obtamed the fourth rank compared with other approaches reported in the
literature. Statistical analysis on SA with AD-NS against SA with other neighbourhood structure selection
mechanisms proved that the performance of SA with AD-NS is significantly better than SA with other
neighbourhood structures selection mechanmisms tested in this work. This indicates that the improvement
history of neighbourhood structure can affect the performance of neighbourhood structures selection
mechanism and subsequently, the performance the applied meta-heuristic.
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INTRODUCTION

The definition of the neighbourhood structure plays
a crucial decision in local search algorithm (Lu and
Hao, 2010). For example, a good neighbourhood structure
can positively influence the performance of Simulated
Annealing (SA) (Moscato, 1993). Choosing a suitable
neighbourhood structure or the size of neighbourhood are
critical decisions, in improving the performance of SA
(Eglese, 1990; Fleischer and Jacobson, 1999). Some
researchers reported that SA with small neighbourhood
size had performed better than large neighbourhood size
(Cheh et al., 1991). Whilst, others proved that SA with
large neighbourhood size had performed better than the
smaller neighbourhood size (Ogbu and Smith, 1990). In
addition, different

combimng two or more

neighbourhoods is a powerful mechanism to increase the
performance of searching algorithm (Xinchao, 2011).
Thus, emploving several neighbourhood structures may
produce better results compared to single neighbourhood
structure. However, the computational time might be
increased due to the number of neighbours that need to
be wvisited and perhaps disconnected neighbourhoods.
Indeed, the question 1s, “how to select a suitable
neighbowhood structure to be applied at each iteration?”
There are many ways to select the neighbourhood
structure, such as umon neighbourhood structures
(D1 Gaspero and Schaerf, 2006) and token-ring search
(Glover, 1989) selection mechanisms. Many works have
investigated on the effect of neighbourhood selection
mechamsm to the performance of meta-heuristic search.
For example Lu and Hao (2010) compared between union
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and token ring combinations (operators/selections) within
tabu search meta-heuristic. They found that token ring
selection mechamsm outperformed unmon combination for
all instances. Avanthay et al. (2003) have combined six
neighbourhood structures to enhance their proposed
Variable Neighbourhood Search (VNS). They switched
from one neighbourhood structure to another one, when
the current neighbourhood structure cannot unprove the
solution in several consecutive non improvement
iterations. The neighbourhood structure was selected
according to the solution cuality, which was produced by
the VNS algorithm for each neighbourhood structure.
Abdullah et . (2010) had applied a Round Robin (RR)
algorithm in SA to control the selection of neighbourhood
structures called dual-sequence SA (DSA) to solve post
enrolment course timetabling problems. They showed that
the performance of DSA is comparable with the state-of-
the-art techniques. Triki et al. (2005) had presented an
empirical study on the effect of neighbourhoed structure
selection to the performance of SA algorithm. Results
showed that choosing a suitable neighbourhood is
mnportant to the performance of SA. In other work,
Zhang et al. (2010) have applied SA with a new
neighbourhood structure for high school timetabling
problems. In order to search for the best neighbour, they
performed a sequence of swaps between pairs of time
slots. Recently, Kalender ef al. (2012) have hybridised SA
with an improvement oriented heuristic selection
mechamsm to solve a curriculum based course timetabling
problem at Yeditepe University.

This shows that the decision to choose a suitable
neighbourhood structure to be applied can affect the
performance of applied meta-heuristic. Therefore, this
work proposes an adaptive neighbourhood structure
selection mechanism in SA algorithm (SA with AD-NS).
SA with AD-NS will adaptively switches among the
neighbourhood structures, guided by the improvement
history of each neighbourhood structure. The applied
neighbourhoed structure will be rewarded if it can
improve the quality of the current solution. Otherwise, it
will be penalised to give better chance to the other
neighbourhood structures to be selected. The hypothesis
for this work 1s, “if the mmprovement history of
neighbourhoed structure can affect the performance of
selection mechanism and
subsequently, the  performance of the
meta-heuristic, then the meta-heuristic (e.g., SA in this

neighbourhood  structures
applied

case) with AD-NS will outperform the meta-heuristic
(i.e., SA) with other neighbourhood structure selection
mechanisms”.

PROBLEM DESCRIPTION

This work use the cummculum based course
timetabling problem (CB-CTT) that 15 a vanant of an
educational timetabling problem, presented in track 3
of  the Second International ~ Timetabling
Competitien-ITC2007 track® (Di Gaspere ef al., 2007),
(http:/www.cs.qub.ac.uk/itc2007/). CB-CTT consisted of
scheduling all lectures into weekly timetable, where each
course lecture must be assigned to a period and a room in
accordance to a given set of constraints, by satisfying the
hard constramts and minimising the violation of the soft
constraints. Hard constraint is mandatory in order to have
a feasible timetable. Whilst, violation of soft constraints
should be mimmised in order to have good quality
timetable.

The Constraints for CB-CTT ITC2007 track® datasets:
This problem has four hard constraints (H1-H4) and four

soft constraints (51-34) presented by D1 Gaspero ef al.
(2007) as follows:

*  Hard constraints:

H1: Lectures. All lectures of a course must be scheduled
to a distinct periods

H2: Room Occupancy. Any two lectures cannot be
assigned mto the same room at the same period

H3: Conflicts. Lectures of courses in the same curriculum
or taught by the same teacher cannot be schedule
mnto the same period

H4: Avalability. If the teacher of a course 1s not available
at a given period, then the lectures of the course
carmot be assigned to that period

. Soft constraints:

81: Room Capacity. For each lecture, the number of
students attending the course should not be greater
than the capacity of the room hosting the lecture

82: Minimum Working Days. The lectures of a course
should be spread into the given minimum number of
days

83: Room Stability. All lectures of a course should be
scheduled at the same room. If this 1s impossible, the
nmumber of occupied rooms should be as few as
possible

S4: Curriculum Compactness. For a given curriculum, a
violation 1s counted if there 13 one lecture not
adjacent to any other lecture belonging to the same
curriculum within the same day, which means the
agenda of students should be as compact as possible
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Objective function: To evaluate the quality of the
timetable, an objective function as proposed in Lu and
Hao ( 2010) Eq. 1 15 used to calculate the violations of soft
constramns. Since, this 1s the mimmisation problem, smaller
objective value (penalty cost) is better:

min (RX)) = F1+F2+F3+F4 1)

where, F1 to F4 are the penalties cost for viclating the soft
constraing (S1-34). F1 is calculated by subtracting the
capacity of the room from the number of students
attending the lecture (if the student emrolment for the
lecture is greater than the room capacity, 1.e., violation of
S1). F2 is the violation of the minimum working day for the
lectures of a course (1.e., violation of S2). If the lectures of
a course are not adequately spread, then the penalty
value is calculated. This is done by subtracting the day
gap between two lectures of the same course from the
minmum numbers of day gap. F3 is the violation of room
stability (1.e., violation of S3). If a lecture 1s assigned to
more than one room, the violation is counted by
subtracting one from the number of rooms that the lecture
1s assigned. F4 1s the violation of curriculum compactness
(1.e., violation of S4). A violation i1s counted if the lecture
is not adjacent to any other lecture belonging to the same
curriculum within the same day.

PROPOSED ALGORITHM

This work uses a standard SA but the aim is to
enhance the performance of SA by employing several
neighbourhood structures and proposes an adaptive
neighbourhood structures selection mechanism.

Basic simulated annealing: Simulated Annealing (SA) is
one of the oldest meta-heuristic algorithms that have
strategy to avoid local minima, by allowing the bad quality
solution to be accepted (with some probability). SA
always accepts good quality neighbour solution; and
probably accepts worse quality solutions using
probability acceptance criteria, P(S) = e This
probability function control the acceptance of neighbour
solution s* based on the quality of s*, f(s™), with regard
to the quality of the current solutions, f(s) and the current
temperature T,, where Af = f(s*)-f(s). The current
temperature T, is reduced using a cooling schedule with
a given cooling rate a for each iteration or level, until the
temperature reaches final mimmum temperature, T,
(that is closed to zero). SA stops when T, is reached.

Adaptive neighbourhoods structure selection: Thus study

proposed new neighbourhood selection mechamsm

(AD-NS) by adaptively switch among the neighbourhood
structures during the search process. The objective of the
proposed neighbourhood structure selector 1s to improve
the performance of the search algorithm (1.e, SA in this
work), by applying a suitable neighbourhood structure at
a given time. Using the AD-NS, the suitable
neighbourhood structure with the best improvement
history will be employed. To test the 1dea, this study used
two neighbourhoods structures denoted as NS, and NS,.

NS,: Move one lecture from the current period to
another clash free position period

NS,: Randomly swaps two different lectures (without
violating the hard constraints)

The improvement strength (fitness) (after the n®
iteration) of the employed and unemployed
neighbourhood structure (at the n® iteration) are
calculated using Eq. 2 and 3, respectively:

f(Sol) if n=0andA =0
ot 2)
@) Z:F(N‘)h +A ifn >0andA#0

b

where, 1 18 the number of the employed iterations; 1 1s the
i" neighbourhood structure that is employed at the n®
iteration; f(Sol) is the quality of the incumbent solution;
and A is the differences between the quality of
the current sclution f{Sol) and the trial solution f{Sol’),
A = f{Sol")-f(Sel).

In order to update the fitness of the unemployed
neighbourhood structures and give them fair chance to be
selected later, this worl proposes Eq. 3 that subtracts A
from it. Tn the minimization problem, the value of A is
negative when the quality of tral sclution 1s better than
the quality of the current solution. Therefore, the fitness
of the applied neighbourhood structure (N;) will be
stronger (lower value of F(N,),) if it managed to generate
good quality neighbour (note: The lowest fitness value
indicates better fitness), whilst the fitness of the
unemployed neighbourhood become wealeer. However,
the fitness of the unemployed neighbourhood will become
stronger if the applied neighbourhood structure failed to
generate a good quality neighbour. Therefore, the
unemployed neighbourhoods will have better chances to
be applied at the next iterations, when the current
employed neighbourhood failed to improve the quality of
the current solution:

f(8ol) ifn=0and A#0
F(N;), ={F(N)),, — A ifn>0andA =0 (3)
F(N ). +p ifn > OandA =0

1089



J. Applied Sci., 13 (7): 1087-1093, 2013

Let:

f(8al) as the quality of Sol;
Sol* as the best found solution;
n as the number of iterations;

T;as the current temperatire;

Given an initial solution Sol as an input;
1. Initialisation:

Do while (termination criteria does not met)

9. Calculate A =f(Sol”)—f(Sol);

11. IfA = Othen // Improved solution.
12, Sol-Sol’/f Update the current solution

14, Sol*-Sol’// Update the best solution so far.
15. Endil

16. Else

17. Generate a random number ¢ between [0, 1];

Sol-Sol’
1¢. Endif
20. End Else

22, n=ntl
23. End while;
24. Output the final solution, Sol*;

Sol be an initial solution; //generated using any constructive heuristic

T, as the initial temperature; //is determined using a dynamic initial temperature

2. Setn=0, 8ol* =8ol, f{Sol*) =1(Sal), T, =T,;

3. Generate k neighbours from N; neighbourhood structures (NS1 and NS2);

4. Select the best neighbour generated neighbour from NS1, Sol' and set F(N, ), = f(Sol');
5. Select the best neighbour generated neighbour from NS2, Sof and set F(N;), = f(SoP);
)
7.
8

Select suitable neighbourhood structure, N, that has the best fitness // (calculated using equations 1 and 2)
Generate k neighbours from N; neighbourhood structures and choose the best neighbour, Sol’;

10. Update the fitness (improvement strength for all neighbourhood structures using Eq.1 and 2)

13. If f(Sol”)< fiSol*)# Sol’has better quality than Sol*.

18. If (¢ 47 >1 then//The solution Sol’ is accepted

21. Update the temperature, T;; /Using adaptive cooling schedule as in (Tarawneh et af., 2013)

Fig. 1: The pseudo code of the SA with AD-NS selection mechanism

where, 1#] and ] 1s the unemployed neighbourhood
structure at the n® iteration and p is a random number
between 0 and 1.

When A iz equal to zero, the unemployed
neighbourhoed structure improvement history will be
updated by subtracting a random number between 0 and
1 from it fitness value, m order to give the unemployed
neighbourhoed structure higher chance to be selected at
the next iteration. Whilst, the fitness of the employed
neighbourhood structure (that was not performed well), 1s
not changed. AD-NS applies one neighbourhood per
iteration. Thus, the neighbourhood structure with the best
fitness (1.e., the best improvement lustory/smallest fitness
value) will be applied at the current iteration.

Simulated annealing with adaptive neighbourhood
structures selection: Figure 1 shows the pseudo-code for
SA that implemented with AD-NS selection mechamsm. In
thus study, the imtial temperature 1s iitialized dynamically
using a dynamic imitial temperature by applying several
iterations (at the early stage) and calculate the deviation
average to determine a suitable imtial temperature for each
mstance. For the cooling schedule, the amount of

reducing the temperature value 15 adaptively adjusted
according to the total number of iterations and the initial
temperature in order to decide the decrement amount
during the search process as in Tarawneh et al. (2013).
SA starts once the mitial solution Sol 1s generated
{(randomly or using constructive techmque). For the first
iteration, both NS, and N3, neighbourhood structures are
employed to equally generate k neighbour solutions of
Sol. Then the best quality neighbours of each
neighbourhood are selected to update the improvement
strength (fitness) of each neighbourhood structure,
respectively, using Eq. 1. After the first iteration, the
neighbourhood structure with the best (mimmum) fitness
(calculated using Eq. 1 and 2) 1s selected to generate k
neighbour solutions of Sol. The best neighbour, Sol” that
15 generated by the selected neighbourhood structure
15 then selected for calculating the A (where
A= f{Sol")-f{Sol)). The A 1s used to calculate the fitness of
all the neighbourhood structures and acceptance criterion
of the SA. The fitness of all neighbourhood structures
{employed and non-employed) are updated using Eq. 1
and 2, accordingly. From line 11 until 24 in Fig. 1, the SA
with AD-NS works similar as standard SA algorithm.
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Statistical method: Since SA is a stochastic algorithm, the
quality of the generated solutions are not normally
distributed. This was tested using Kolmogorov-Smirnov.
Therefore, the Wilcoxon Signed-Rank Test (1e., a
non-parametric test) with a 95% confidence level, 1s used
for a statistical analysis on the results obtained by the
tested approaches. This is performed to validate the
Alternative Hypothesis, which is:

“If the improvement history of neighbourhood
structure can affect the performance of neighbourhood
structures selection mechanism and subsequently, the
performance the applied meta-heuristic, then the
meta-heuristic (i.e., SA in this case) with AD-NS will
outperform the meta-heuristic (1e., SA) with other
neighbourhoed structure selection mechanisms.”

EXPERIMENTAL SETUP AND RESULTS

Table 1 shows the parameters setting for the SA
algorithms tested in this worle. These parameter values

were determined based on preliminary test. The

Table 1: Parameters values used for SA algorithms

Parameters Method/value

Temperature Dynamic initial temperature

Cooling schedule Adaptive as in (Tarawneh et ai., 2013)

Termination condition 460 sec

Nurmber of neighbours to be *P/8 neighbours, where P is the number

generated for each iteration, k of the free position or the total number
of lectures.

The neighbours size is determined based on the primarily exp eriments

experiments have been carried out (with 31 independent
runs) to investigate the search capability for AD-NS in SA
algorithm. For comparison, this study used the standard
SA as i Abramson (1991) with dynamic mitial
temperature and adaptive cooling schedule.

Table 2 shows a comparison results among SA with
AD-NS (A f(Sol")-f(Sol)), SA with token-ring
(NS1-NS2) and SA with union (NS1 U NS2)
neighbourhood structures selections under the TTC2007
track’ timeout condition (460 sec in this machine). It
shows that AD-NS with SA outperformed the other
neighbourhood
instances, (for all best, worst, mean and the standard
deviation). A statistical analysis on the results (Table 3)
1s performed using Wilcoxon Signed-Rank Test in order to
support the Alternative Hypothesis, which 1s:

“If the mnprovement history of neighbourhood
structure can affect the performance of neighbourhood
structures selection mechanism and subsequently, the
performance the applied meta-heuristic, then the meta-
heuristic (i.e., SA in this case) with AD-NS will outperform
the meta-heuristic (i.e., SA) with other neighbourhood
structure selection mechanisms.”

Table 3 showed that (in general) the performance of
SA with AD-NS is statistically significant better than the
performance of SA with other two neighbourhood
selection mechamsms (token-ring and umon). SA with
AD-NS obtamed better quality of solutions almost in all
instances (except compOl and compl 1). The sigmficance

structures selections across in  all

Table 2: Experimental results of AD-NS, token ring and union neighbourhood structures combinations in SA over 31 independent runs on ITC2007 track®

datasets
(Token ring) NS, »NS, (Union) NS; UNS, (AD-NS) NS> NS,

Instances Best Worst Mean STD Best Worst Mean STD Best Worst Mean STD
Comp01 5 6 5.06 0.250 5 8 5.23 0.617 5 5 5.00 0.000
Comp02 86 105 97.35 5.684 87 111 102.16 6.573 85 103 94.65 5.794
Comp03 93 121 104.81 8.023 93 134 120.19 9.537 93 114 102.09 6.753
Comp®4 65 85 76.35 6.509 65 90 79.97 7.570 63 83 71.72 6.806
Comp05 330 350 340.48 5372 334 356 346.48 6.297 328 343 335.58 5.461
Comp06 84 120 102.00 9.778 86 126 111.71 10.802 84 116 98.39 9.084
Comp07 54 71 63.65 5.251 57 83 70.52 6.757 51 67 60.32 4.956
Comp08 54 76 66.94 6.303 60 85 75.00 6.723 52 71 62.30 5.702
Comp09 143 169 157.94 7.550 149 183 164.68 8.179 140 161 150.82 6.543
Compl0 36 53 44.45 5.824 40 63 53.94 6.418 31 48 40.71 5.100
Compll 0 1 0.16 0.374 0 2 0.45 0.624 0 1 0.09 0.288
Compl2 341 369 356.42 8.955 342 379 362.81 11.368 336 359 347.29 7.773
Compl3 a5 120 106.58 7.865 96 127 110.77 10.494 91 115 101.71 6.357
Compl4 77 100 88.61 7.680 79 109 93.87 7.991 75 96 85.74 6.976
Compl5 83 107 94.74 6.831 86 116 97.39 8.277 80 102 90.48 6.683
Complé 60 88 T4.74 8.185 62 94 77.16 9.505 56 85 70.55 9.352
Compl7 84 103 94.58 6.071 88 119 98.61 8.589 82 101 91.81 5.845
Compl8 94 120 104.84 7.453 99 129 111.39 8.640 89 115 98.90 7.222
Compl9 91 121 105.87 8.385 96 127 111.06 9.405 90 117 103.19 7.543
Comp20 46 68 56.26 6.309 47 76 60.71 9.023 45 61 52.76 5.852
Comp21 103 127 114.97 6.730 102 135 117.23 8.593 102 124 111.19 6.096
Best results in bold, All the figures in column “Best’, “Worst” and “Mean” representing the quality of solutions for best, worst and mean for
31 runs
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level in this test is 0.05, i.e., if p value is less than 0.05
then, the performance of SA with AD-NS is statistically
significant better compared to token ring and umon
neighbourhood structures selection mechanisms. Results
supported the hypothesis that AD-NS can enhance the

Table 3: Statistical analysis (Wilcoxon Signed-Rank Test) for AD-NS
against token ring and union neighbourhood structures selections
in SA tested on ITC 2007 track® datasets

AD-NS vs token ring AD-N§ vs union
Instances p-value p-value
Comp01 0.051 0.016
Comp02 0.003 0.000
Comp03 0.001 0.000
Comp04 0.001 0.000
Comp05 0.001 0.000
Comp06 0.003 0.000
Comp07 0.002 0.000
Comp08 0.000 0.000
Comp09 0.000 0.000
Compl0O 0.001 0.000
Compll 0.059 0.016
Compl2 0.000 0.001
Compl3 0.001 0.000
Compl4 0.005 0.001
Compl5 0.001 0.000
Complé 0.003 0.001
Compl?7 0.001 0.015
Compl8 0.000 0.000
Compl9 0.005 0.000
Comp20 0.000 0.002
Comp21 0.001 0.000

performance of SA compared to token ring and union
neighbourhood structures selections mechanisms (i.e., the
alternative hypothesis is accepted).

Finally, the performance of SA with AD-NS is
compared against other approaches from the literature
{Table 4) and the best know results under ITC2007 Track’
timeout condition. Table 4 showed that the SA with AD-
NS can produce good quality solution compared with
other approaches in the ITC 2007 Track®, under the time
out condition which 15 equal to 460 seconds in this
work. For example, SA with AD-NS managed to obtain the
best known results m the compl and compll (small
instances). For compl 7 and 21, SA with AD-NS obtained
the best results in comparison with other approaches
compared in Table 4. Furthermore, it outperformed
(Geiger, 2012; Clark et al., 2008) approaches for all
instances.

According to the average results (Avg) in Table 4,
the approaches in Table 4 is ranked. The smaller average
ranked 13 better. For example, Muller (2009) 1s ranked first
for 15 instances out of 21, (Lu and Hao, 2010) ranked
second and SA with AD-NS approach obtained the fourth
rank compared with others. According to the average
ranked m Table 4, the SA with AD-NS approach
demonstrated that AD-NS selection mechanism can
enhance the performance of SA.

Table 4: Average and best results of the SA with AD-NS in comparison with the top five competitors and best know results from ITC 2007 Track®

SA with AD-NS  (Muller, 2009) (Luand Hao, 2010) M1 (Geiger, 2012) (Clark et ad., 2008)

4 1 2 3 5 6 Best Known™®
Rank Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Best*
Comp01 5.00 L 5.0 5 5.0 5 5.1 L 6.7 L 27.0 10 L
Comp02  94.65 85 61.3 51 6l.2 55 65.6 50 142.7 111 131.1 111 24
Comp03 10209 93 94.8 84 8.5 71 89.1 82 160.3 128 1384 119 66
Compd 7172 63 42,8 37 46.9 43 39.2 35 82.0 72 90.2 72 35
Comp05  335.58 328 343.5 330 3260 300 3345 312 5254 410 811.5 426 290
Comp06 9839 84 56.8 48 69.4 53 4.1 69 110.8 100 149.3 130 27
CompQ7  60.32 51 33.9 20 41.5 28 49.8 42 76.6 57 1534 110 6
Comp08 6230 52 46.5 41 52.6 49 46.0 40 81.7 77 96.5 83 37
Comp09 15082 140 113.1 109 1165 105 113.3 110 1641 150 148.9 139 96
Compl0 4071 31 21.3 16 3.8 21 36.9 27 81.3 71 101.3 85 4
Compl1 0.09 0 0.0 0 0.0 0 0.0 0 0.3 0 57 3 0
Compl2  347.29 336 351.6 333 3601 343 361.6 351 485.1 442 445.3 408 300
Compl3 101.71 91 73.9 66 792 73 76.1 68 1104 622 122.9 113 59
Compld 8574 75 61.8 59 65.9 57 62.3 59 99.0 a0 105.9 84 s1
Compl5 90.48 80 94.8 84 8.5 71 89.1 82 160.3 128 138.0 119 66
Complé 7055 36 41.2 34 491 39 50.2 40 @92.6 81 107.3 84 18
Compl7  91.81 82 86.6 83 100.7 91 107.3 102 1434 124 166.6 152 56
Compl8 9890 89 1.7 83 80.7 69 733 68 1294 116 126.8 110 652
Compl? 103.19 90 68.8 62 9.5 a5 79.6 75 132.8 107 125.4 111 =7
Comp20 5276 45 34.3 27 60.9 47 65.0 61 7.5 88 179.3 144 4
Comp2]l 111.19 102 108.0 103 124.7 106 138.1 123 185.3 174 185.8 169 75

Best known results in bold; while the best results among approaches in italic, Hybrid approach (Muller, 2009), TS (Lu and Hao, 2010), M1: Third place

winner for the ITC2007 track3 (Note: There is no

publication for

this work except in the ITC2007 track3 web site)

(http:/fwww.cs.qub. ac.uk/itc2007/index_filesAinalists.htin), Threshold accepting local search (Geiger, 2012), Repair-based Local Search (Clark efal., 2008),
Avg: Average, Best : Best, Best*: Best Known results under ITC2007 track3 timeout condition
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CONCLUSION

This work proposed a new adaptive neighbourhood
structures selection (AD-NS) mechanism to enhance the
SA  performance by adaptively select the suitable
neighbourhood structure during the search process
according to each neighbourhood structure improvement
history. The performance of AD-NS in SA was evaluated
by testing the approach on curriculum based course
timetabling problem that was presented in track 3 of the
Second International Timetabling Competition (ITC2007
track®). Results demonstrated that AD-NS can enhance
the performance of SA compared to token ring and union
neighbourhood structures selections mechanisms. This
indicates that the improvement history of neighbourhood
structure can affect the performance of neighbourhood
structures selection mechanism and subsequently, the
performance of the applied meta-heuristic. For the future
work, AD-NS3 will be applied using more neighbourhood
structures i other local search algorithms such as
variable neighbourhood structure algorithm.
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