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Abstract. This work proposes a population based heuristic that can be 
embedded within any local search algorithm to solve university course 
timetabling problems. Population based Local Search (PB-LS) employs two 
main operators. The first is applied to a single solution to determine the force 
between that solution and the current solutions, whilst the second is applied to 
all solutions to determine the force in all directions. The progress of the search 
through the search space is governed by the forces either in a single direction or 
in all directions. The aim of our work is to produce an effective algorithm, 
which can increase the diversity of local search algorithms and overcome the 
limitations of other population based algorithms. In order to evaluate the 
effectiveness of PB-LS, we perform a comparison between the performance of 
PB-LS with other approaches in the scientific literature. We use university 
course timetabling benchmark datasets as a test domain. Results show that, PB-
LS is able to produce statistically significant higher quality solutions that 
outperforms many other approaches (in some instances with regards to Socha 
dataset).  

Keywords: Course Timetabling Problem; Particle Collision Algorithm; 
Adaptive Randomized Descent Algorithm; Population Based Algorithm. 

1 Introduction 

Generally, university course timetabling problems involves assigning a set of courses 
(events), teachers and students to a fixed number of timeslots and rooms subject to a 
variety of constraints [1]. Constraints in a timetabling problem can be classified as 
hard and soft [1]. The goal, when solving timetabling problems, is to satisfy all hard 
constraints and attempt to accommodate the soft constraints as much as possible (in 
order to produce high-quality timetable). All hard constraints must be satisfied to 
obtain a feasible timetable, whilst soft constraints can be violated if necessary, but each 
violation of the soft constraints will be penalized. The smaller the penalty value, the 
better the quality of the timetable. University course timetabling problem has been 
classified as an NP-hard problem; therefore it is difficult (in general) to find an optimal 
solution (for larger size instances) in a reasonable time [2]. Finding good-quality 



solutions to these problems depends on the methodology used and the problem 
representation employed during the search [2].  
 

In recent years, various approaches had been applied to solve university course 
timetabling problems. These approaches include great deluge [3], simulated annealing 
[4] tabu search [5] and randomized descent method [6].  

 
A new approach to solve course timetabling problems based on multi-

neighbourhood particle collision algorithm (MPCA) [7] was recently proposed. 
However, MPCA is a descent heuristic. The disadvantage of these methodologies is 
that, they are incapable of escaping local optima [6]. Therefore, we extend our 
previous work [7] by proposing an adaptive randomized descent algorithm (ARDA) 
[8] that employs an adaptive criterion to escape from the local optima. We also 
investigated hybridizing MPCA and ARDA [9] to overcome the limitations of MPCA.  

 
However, MPCA-ARDA still has no diversification strategy, which motivated us 

to use the concept of a population based algorithm due to their ability to explore wider 
areas of the search space than local search algorithms [10]. Generally, the limitation of 
many population based algorithms is in exploiting the search space [10], as most of 
them are good at exploration rather than exploitation. Therefore, in this work, we 
propose a population based heuristic (i.e. Population Based Local Search, PB-LS) to 
overcome the limitations of a population based algorithm by increasing the ability of 
the intensification process. This algorithm is also motivated by the idea of 
Gravitational Emulation Local Search (GELS), which was proposed and developed by 
Webster and Bernhard [11].  

 
The aim of our work is to investigate the performance of applying the PB-LS with 

MPCA-ARDA for solving university course timetabling problems. In order to evaluate 
the effectiveness of the MPCA-ARDA, we make a comparison between the 
performance of MPCA, ARDA, MPCA-ARDA as well as other approaches on Socha’s 
university course timetabling datasets [12]. 

2 Problem Description 

In this work, the eleven standard benchmark test datasets instances that were 
introduced by Socha et al. [12] are used, which seek to optimise the students 
satisfaction for the university course timetabling problem. The problem consists of: 
 
 A set of Rooms R in which events can take place.  
 A set of Events (courses) E to be scheduled in 45 timeslots (5 days of 9 hours 

each with one hour for each timeslot).  
 A set of Features F characterizing the rooms. 
 A set of Students S who attend the events. 

 
These datasets are categorized into three groups, small (S1, S2, S3, S4, S5), medium 

(M1, M2, M3, M4, M5) and large (L) (see Table 1 and [12] for a detailed description). 
Table 1 also shows, the number of students, events, room and features as well as the 
conflict density (CD) for each dataset (representing the complexity), approximate 
number of students enrolled in each event (Students/ Events), and the approximate 
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number of available rooms for each event (Rooms/ Events) which are calculated as in 
[13]. 

Table 1. Eleven Datasets [12; 13] 

 

 

 

 

 

 

 

 
     
These datasets have three hard constraints (Hc1, Hc2 and Hc3) and three soft 

constraints (Sc1, Sc2 and Sc3), as follows:   
 

(a) Hard constraints.  
Hc1: No student attends more than one event at the same time.  
Hc2: The room has to be large enough for all the attending students and has all 

the features required by the event. 
Hc3: Only one event takes place in each room in any timeslot. 

(b ) Soft constraints  
Sc1: A student should not have a class in the last timeslot of the day.  
Sc2: A student should not have more than two classes consecutively. 
Sc3: A student should not have a single class on a day.  

 
The quality of timetable is measured based on the number of soft constraints 

violations. Each violation of the soft constraints will be penalized ‘1’ for each student 
who is involved in this situation [12]. All hard constraints must be satisfied since we 
only deal with feasible solutions, which is usually the case for the majority of research 
in this domain. 

3 Methodology overview  

This works proposes a population based local search algorithm (PB-LS) for university 

course timetabling problems. PB-LS starts with an initial solution and iteratively 

explores its neighbour solutions, seeking for a better one. The neighbour solution is 

obtained by modifying the current solution using one or more neighbourhood 

structures.   

3.1 Initial Solution 

In this work, we use a constructive heuristic that was proposed in [16] to construct 
initial solutions for course timetabling problems. The constructive heuristic has three 

  Dataset
    # 

Students 
   # 

Events 
 # 

Rooms 
 # 

Features CD 
Students/
Events 

Rooms/ 
Events  

S1 80 100 5 5 10.96 4.98 0.82 
S2 80 100 5 5 13.92 5.36 0.79 
S3 80 100 5 5 9.71 4.65 1.00 
S4 80 100 5 5 7.16 3.45 1.39 
S5 80 100 5 5 15.10 5.99 1.17 
M1 200 400 10 5 37.38 8.85 2.23 
M2 200 400 10 5 37.66 8.84 1.91 
M3 200 400 10 5 40.44 8.85 1.91 
M4 200 400 10 5 37.50 8.81 1.88 
M5 200 400 10 5 28.27 8.66 1.37 
L 400 400 10 10 45.57 8.92 0.76 



phases: largest degree heuristic, neighborhood search and tabu search. The 
constructive heuristic starts with an empty timetable and successively invoke the three 
phases to generate a feasible timetable.  In the first phase, all unscheduled courses are 
sorted based on the number of students they have in conflict with other courses. Then, 
the one that has the highest number of conflicts compared to the other courses is 
selected first. The selected course is then assigned to a feasible timeslot-room which 
are selected randomly. If there is no feasible room for this course, it will be assigned 
to any room.  If all courses have been scheduled to timeslot-rooms, we ignore phases 
2 and 3. Otherwise, phases 2 and 3 are invoked to achieve feasibility.  
 

Phase 2, employs a simple decent algorithm to reduce the number of hard 
constrain violations. The neighbourhood solution is generated by either moving one 
course from its current timeslot-room into another timeslot-room, selected randomly, 
or it randomly selects two courses and swaps their timeslots and rooms. In both cases, 
the new solution is accepted if the move does not violate any hard constraints and the 
quality of the generated timetable in terms of hard constraints violation is better than 
the previous solution. Phase 2 is terminated after ten non improving iterations. If the 
solution is feasible, we ignore phase 3, otherwise, phase 3 is invoked.  

 
Phase 3, employs a tabu search algorithm that explores neighbouring solutions 

similar to phase 2, but it also maintains a tabu list to prevent certain move been made 
for a certain number of iteration. The size of the tabu list is calculated by tl = 
rand(10)+δ * nc, where rand(10) is a random number between 0 and 10, nc is the 
number of events that violate the hard constraints and δ is a constant which is set to 
0.6 [16]. This phase will stop after 1000 non improving iterations.  

3.2 Neighbourhood Structures  

The proposed algorithm starts with an initial solution and iteratively improves it by 
generating a neighbourhood solution using a set of neighbourhood structures. In this 
work, we use eight neighbourhood structures (NS1-NS8) which have been widely 
used in university course timetabling problem. These neighbourhood structures are 
classified into two groups: i) common neighbourhoods (NS1-NS5 as in [14]) and ii) 
shaking neighbourhoods (NS6 and NS8 as in [14], and NS7 as in [15]). Five of them 
NS1-NS5 [14] are the same neighbourhoods utilised in ARDA [8]. In addition, we use 
three other neighbourhood structures (NS6-NS8) to diversify the search (shake the 
timetable). The neighbourhood structures are: 
 
NS1: Randomly select two courses and swap their rooms and timeslots if feasible. 
Otherwise swap their timeslots only, if feasible [14]. 
 
NS2: Randomly select two timeslots and swap all the courses in one timeslot with all 
the courses in the other timeslot [14].   
 
NS3: Randomly select four courses and swap timeslots and rooms of the first and 
second courses with the third and fourth courses, if feasible.  
 
NS4: Randomly select a course, timeslot and room, and then move the course 
(reassign) to the new timeslot and room if feasible [14]. 



5 

NS5: Randomly choose a course from the top 15% of the list (ordered based on the 
penalty value in descending order) and randomly assign to other timeslot. Abdullah 
[14] used this neighbourhood (NS5) but with 10% selection. The reason behind using 
15% is to widen the search space.  
 
NS6: Choose 15% of the courses in the list and randomly assign them to other feasible 
timeslots. We use the same idea as NS5 but the difference is that, in NS5 we assign 
one course only whereas in NS6 we assign 15% of the courses to diverse the search 
(shake the timetable). 
 
NS7: Randomly select two timeslots (t1 and t2) based on the largest enrolled (conflict) 
events. Select the most conflicting event in t1 and t2 and then apply a kempe chain 
move [15]. The main idea of the kempe chain neighbourhood is to move a chain of 
course within the timetable while maintain the feasibility by swapping conflicting 
courses until achieving feasibility.   
 
NS8: Rotate two timeslots: Randomly select two timeslots (ti and tj), where ti > tj and 
the timeslots are ordered t0, t1, …, t44. Take all the courses in ti

 
and allocate them to tj. 

Now take the courses that were in tj
 
and allocate them to tj-1. Then allocate those that 

were in tj-1
 
to tj-2

 
and so on until those courses that were in ti+1

 
are allocated to ti. This 

neighbourhood structure was introduced by Abdullah [14].  

4 Population based Local Search Algorithm 

This work is motivated by the concept of population based algorithms due to their 
ability to explore wider areas of the search space than using a local search algorithm 
[10]. However, some limitations of population based algorithms are [17]: 
 

 Ineffective exploitation of the solution space (intensification process), in 
which there is no significant solution improvement.  

 Solution combination methods to generate new solutions (e.g. crossover in 
genetic algorithm) and mutation operator usually rely on randomization and 
need a repair mechanism to use them effectively in constrained problems. 

 The process of updating the population is usually performed randomly. 
 Some algorithms do not have a memory as guidance for the search (e.g. 

genetic algorithm and memetic algorithm). 
 

The idea of the PB-LS is to enhance the performance of population based 
algorithms by increasing the ability of the intensification process. This heuristic is 
motivated by the idea of gravitational emulation local search (GELS). 
 

The GELS algorithm is based on the natural principles of gravitational attraction 
[11]. The reason for using gravity is to cause objects to be pulled towards each other. 
The more massive an object, the more gravitational “pull” it exerts on other objects. 
Also the closer two objects to each other, the stronger the gravitational forces are 
between them. This means that a given object will be more strongly attracted to larger 
and closer objects.  
 



Previously the GELS algorithm was known as gravitational local search algorithm 
(GLSA) and consisted of two versions: one that was based on the gravitational 
attraction between two objects, and allowed navigation only to adjacent positions 
within the solution space; the other was based on gravitational field attractions among 
objects and allowed navigation to non-adjacent positions [11].  
 

Both versions of GELS utilize the same gravitational force formula (see equation 
1) but in slightly different ways [11]. The first version applies the formula to a single 
solution (vector) within the local search neighbourhood to determine the gravitational 
force between that solution and the current solutions. Whilst, the second version 
applies the formula to all solutions (vectors) within the neighbourhood and calculates 
the gravitational force between each of them and the current solution.  

 
GELS simulates Newton’s formula of gravitational force between two objects [11] 

(equation 1). 
 
                                               F= G (CU - CA) / R2                                                      (1)  
 

Where F is the Force value representing the value of the gravitational force 
between two objects (i.e. to enhance the difference between the quality of solutions), 
G = 6.672, CU = objective function value of the current solution, CA = objective 
function value of the candidate solution and R is the value of the parameter radius, 
representing the middle point in the distance between two objects.  
 

GELS has an intensification mechanism (improvement of a solution using a local 
search). In GELS, there are two parameters to be tuned: 
 Radius – sets the radius value in the gravitational force formula. It is used to 

determine how quickly the gravitational force can increase or decrease. 
 Iterations – defines the number of iterations for the algorithm before it is 

terminated. 
 
Therefore, in this work, we propose the PB-LS heuristic which overcomes some of 

the limitation in GELS. In PB-LS, we propose a new formula to calculate the force 
value as shown in formula 2 to overcome the issue of parameter Radius in GELS.  

 
                                                    F= CU - CA                                                             (2)  
 

Where F is the Force value (in minimization problem), CU = objective function 
value of the current solution and CA = objective function value of the candidate 
solution. 
 

Formula 2 differs from the formula 1, as GELS obtains real force value, whilst, 
formula 2 does not employ any static parameters. Indeed there is no relation between 
G (i.e. 6.672) and university course timetabling problem or the problems that GELS 
has been applied to.  

 
PB-LS start from zero velocity (i.e. direction value is zero) but will be updated 

during the search process.  In PB-LS, we only apply the first method. The procession 
of the search through the search space is governed by the forces in a single direction 
as determined by formula 2. In this work, we use MPCA-ARDA (as a local search) to 
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intensify the search since we already proposed MPCA-ARDA in [9]. Therefore, we 
can compare the result of MPCA-ARDA against the PB-LS with MPCA-ARDA in 
order to demonstrate the effectiveness of PB-LS approach.  

 
Fig. 1 shows the pseudo code for PB-LS approach. Let  So be a given initial 

solution, Sbest be the best obtained solution, f(Sbest) be the quality of Sbest; f(So) be the 
quality of So; N.iters be the number of maximum iterations; reset.iter be the number of 
non-improving iterations required to reset the directions and update solutions; force be 
the force value. In addition, we will also need to initialize the required parameters for 
the local search method (in our case, we use MPCA-ARDA).  

 
PB-LS starts with an initialization phase, where we initialize all the parameters 

(see table 2), generate initial velocity vectors (by applying shaking neighbourhoods on 
So). In our work, for the first iteration vv1, vv2 and vv3 are equal to the solutions 
generated by NS6, NS7 and NS8 accordingly. Initially, the direction for all velocity 
vectors is reset to 0 (see example in Fig. 2-a).  

 
 In the improvement phase (Step2.1 in Fig. 1), at each iteration, we rearrange the 

solutions in vv in descending order based on their direction values. Higher direction 
value indicates the better potential for improving the solution rather than other 
solutions in vv. If all directions values are different (see Step 2-1 in Fig.1), we choose 
the solution that has the largest direction value (e.g. vv1 in Fig. 2-b) vvk and set is as S0 
to be improved by local search (in our work, we use MPCA-ARDA) to produce S0* 
until the stopping condition is met. In MPCA-ARDA, we use common neighbourhood 
structures (NS1-NS5). If the solution S0* is accepted by the local search, the force 
value is calculated using equation (2) is added (positive or negative) to the selected 
direction and the selected solution in vv is replaced with the accepted solution. 
Otherwise, we will increase the unimproved counter of the selected solution 
(UnImprovek) by one. The best solution found Sbest will be updated with S0* if the 
quality of S0* is better than S0. If the UnImprovek is equal to the predetermined 
successive unimproved iterations, reset.iter (i.e. 10 in this work), then we reset the 
direction of vvk to ‘0’ and replace vvk with the best neighbour generated from Sbest by 
randomly generating some neighbours (i.e. 5 in this work) from shaking 
neighbourhoods. Otherwise, we proceed with the next iteration. This mechanism 
attempts to escape from a local optima and to diversify the search. 

  
If some direction values are the same (Step2.2 in Fig. 1), e.g. vv2 and vv3 in Fig. 2-c, 

we then perform step 2.1a) in Fig.1 to differentiate that directions for all solutions that 
has similar direction value. This attempts to maintain a set of diverse solution. 

 
The limitation of PB-LS approach is that, we need to determine the number of 

reset.iter to reset the directions and update the solutions. Smaller reset.iter indicate 
more exploration, whilst, biggest value indicate more exploitation. 

  
 
 
 
 
 
 



Procedure PB-LS  
Step 1: Initialization Phase 
  Given an initial candidate solution So with f(So) as the quality of So; 
  Set Sbest = So , f(Sbest)= f(So);    
  Generate one neighbour solution of Sbest from each shaking neighbourhood; 
  Initialize the velocity vector (vv), where vv1,vv2, vv3 ... vvN+1 =  
        solution generated by each shaking neighbourhood;  
  Set all the directions and un-improve counters (UnImprovek) for each vector in vv  = 0;  
  Set N.iters; (stopping condition); 
  Set reset.iter (the number of iterations to reset the direction & update solutions); 
  Initialize the required  parameters  for the Local Search Method; 

 
Step 2: Improvement (Iterative) Phase   
repeat   

Arrange the vector in vv in descending order based on their direction value; 
2.1 If   the direction is clear  // No duplication in the direction values  

               Set So  equal to the first vector in vv;  // Select the best direction 
Set k=1; 

 
2.1a) Apply Local Search on So to produce So*; 

Calculate the force value for the vvk using equation 2; //positive or negative 
force with So as a current solution and So*as a candidate solution. 

 
Update the direction value by adding force value to the direction of the vvk;   
If f(So*) is better than f(Sbest), then Sbest= So*;  
If f(So*) is better than f(S0), then set vvk = So*; 
Else 

Increase the UnImprovek of the vvk by one; 
If UnImprovek = reset.iter;                     

Set the direction of vvk = 0; 
UnImprovek=0; 
Randomly generate one neighbour solution of Sbest from each shaking 
neighbourhood and replace vvk with the best neighbour; 

End If 
End Else; 

End if 
2.2 Else  ; // Improve all solutions that has similar direction value 

Select all solutions in vv that have similar values and apply Step 2.1a) by 
setting So and k index appropriately.. 

End Else;     
    iterations=iterations+1; 
until  iterations> N.iters (termination condition is met) 
Step 3: Termination phase (N.iters termination condition is met) 
        Return the best found solution Sbest  

Fig. 1. Pseudo code for PB-LS approach to solve university course timetabling problem 
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5 Experimental Results and Discussion  

In this work, we have run our algorithm 20 times across 11 instances that were 
introduced by Socha et al. [12]. The algorithm is run on PC with an Intel dual core 1.8 
MHz, 1GB RAM. PB-LS parameters are shown in Table 2. For the small datasets, PB-
LS with MPCA-ARDA obtain results within 2 to 10 minutes. Whilst for the medium 
and large datasets, PB-LS took within 10 to 13 hours to achieve the results. 

Table 2. Parameters settings used in our PB-LS 

Parameter Value 
N.iters  Termination condition (Number of Iterations) = 500,000.  

reset.iter The number of  iterations to reset the directions and update 
the solutions= 10  

VVN 
The number of shaking neighbourhood structures = 3 (i.e. NS6, 
NS7 and NS8) 

Local Search MPCA-ARDA (number of iterations=?? as a stopping condition) 
  

Table 2 shows that, PB-LS employ four parameters as follows: the first parameter 
(N.iters) is determined based on the literature [18]. Whereas, the second parameter 
(reset.iter) is determined as ‘10’ based on preliminary experiments. In the preliminary 
experiments, we performed 5 runs for each of reset.iter equal to 5, 10, 15 and 20 and 
found that the reset.iter=10 produce the best results. The third parameter (VVN) is 

 Velocity 
Vector 

Penalties Directions 
Value 

vv1 400 0 
vv2 405 0 
vv3 420 0 

  
                        (a) 

Velocity 
Vector 

Penalties Directions 
Value 

vv1 400 5 
vv2 405 4 
vv3 420 1 

 
                         (b) 

Velocity 
Vector 

Penalties Directions 
Value 

vv1 400 5 

vv2 405 4 

vv3 420 4 

 
                                                       (c) 

Fig. 2. Example on PB-LS approach 



determined as ‘3’ based on number of shaking neighbourhood (in our case three 
neighbourhood used are NS6, NS7 and NS8). The fourth parameter is the selection of 
local search method. 
 

As can be seen from Table 3, both algorithms obtained same results for small 
instances (S1 to S5). This is because small instances are easy to solve. However, PB-
LS with MPCA-ARDA outperformed MPCA-ARDA in all medium and large 
datasets.  

 
In order to investigate the performance differences between PB-LS with MPCA-

and MPCA-ARDA, a Wilcoxon test is carried out with 95% confident level. The null 
hypothesis assumes there is no difference between the compared methods. The p-value 
less than 0.05 mean there is a significant difference between these methods. Table 3 
shows the comparison between MPCA-ARDA and PB-LS with MPCA-ARDA. It 
illustrates the best score (fmin), the average score (favg), the standard deviation (σ std) 
for PB-LS with MPCA-ARDA algorithm and MPCA-ARDA algorithm as well as the 
p-value of PB-LS- MPCA-ARDA (abbreviated as PB-LS) vs. MPCA-ARDA. 

Table 3. Statistical analysis of PB-LS with MPCA-ARDA algorithm and MPCA-ARDA 
algorithm.   

Data Set 
fmin 

 
favg 

 
Std. Dev.(σ) 

PB-LS vs. 
MPCA-
ARDA 

PB-LS 
MPCA-
ARDA 

PB-LS  
MPCA-
ARDA 

PB-LS 
    MPCA-    
   ARDA 

p-value 

Small 1 0 0 0.65 1.00 0.75 0.86 0.071 
Small 2 0 0 0.55 1.00 0.83 0.79 0.007 
Small 3 0 0 0.95 1.15 0.89 0.81 0.392 
Small 4 0 0 0.75 0.90 0.72 0.79 0.414 
Small 5 0 0 0.60 0.95 0.68 0.83 0.008 

Medium 1 41 64 52.75 75.35 7.55 6.99 0.000 
Medium 2 39 65 54.80 78.05 9.01 8.04 0.000 
Medium 3 60 91 80.85 106.00 14.73 8.65 0.000 
Medium 4 39 66 49.50 79.35 7.74 8.32 0.000 
Medium 5 55 89 65.05 104.05 7.54 9.99 0.000 

large  463 576    483.20 593.50 16.69 11.89 0.000 
Note: Bold in p-value indicate that PB-LS is significantly better than MPCA-ARDA. 

 
From Table 3 one can see that, for all tested instances the p-value is less than 0.05, 

which means that PB-LS is performed better than MPCA-ARDA, except in small 3 and 
small 4 instances the difference is not significant. Again, this is because small instances 
are easy and most of proposed method obtained very good results on these instances. 
Fig. 3 shows the box and whisker plot details of the basic PB-LS with MPCA-ARDA. 
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Fig. 3. Box and whisker plot of PB-LS with MPCA-ARDA for all datasets 

 
Fig. 3 shows that in most cases, PB-LS with MPCA-ARDA was capable of 

producing good quality solutions, in all datasets (the medians are close to the best runs 
solutions except in medium 2 and small4 datasets the median is close to the worst).  
 

In general the result in Table 3 shows that, PB-LS with MPCA-ARDA 
outperformed the MPCA-ARDA across all instances (with regard to fmin and favg). 
Indeed, the standard deviation shows that PB-LS with MPCA-ARDA is more 
consistent than MPCA-ARDA (in small1, small3, small5, medium4 and medium5 
datasets). Generally, we can conclude that, the result in Fig. 3 and Table 3 showed that 
PB-LS with MPCA –ARDA obtained good quality solution compared to MPCA-
ARDA. This demonstrates that the use of population of solution helps the algorithm in 
diversifying the search space to get a better quality solution. 
 
 Table 4 shows the comparison between our PB-LS (with MPCA-ARDA) and other 
meta-heuristic searches that were tested on Socha benchmark datasets and we also  
report the rank of our algorithm compared to the others. The best results are presented 
in bold. 
 

Results in Table 4 shows that of our algorithm outperformed other methods on 
medium1, medium2, and medium3 instances. The best result of medium4 is obtained 
by Abdullah and Turabieh [35] whilst, the best results of medium5 and large instance 
is obtained by Turabieh et al. [18]. If we consider an individual comparison with these 
two methods, our algorithm outperformed Abdullah and Turabieh [35] on 5 out of 6 
instances and tieing with small instances (obtained the same results for all small 
instances) and outperformed Turabieh et al. [18] on 3 out of 6 instances and also tieing 
with small instances (obtained same results for all small instances with regard to the 
best obtained soltuions). Also, the percentage deviation of our algorithm for medium4, 
medium5 and large are 0.21, 0.122 and 0.13 which are very close to the best known 
results for these instances.  

 



 
 

 
 

Table 4. Comparison between our PB-LS with MPCA-ARDA and other approaches in the literature 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data Set Rank

PB-LS 
with 

MPCA-
ARDA 

 [23]  [24]   [25]  [26]  [27]   [28] [29] [30]  [31]    [14] [12]  [32] [33]  [34]  [35] [36] [37] [37]  [38]   [18]  [39] [40] [7] [8] [9] 

Small1 Same 0 0 0 0 0 5 10 2 0 6 3 1 1 8 5 0 0 0 0 0 0 0 0 0 0 0 
Small2 Same 0 0 0 0 0 5 9 4 0 7 4 3 2 11 3 0 1 0 0 0 0 0 0 0 0 0 
Small3 Same 0 0 0 0 0 3 7 2 0 3 6 1 0 8 2 0 0 0 0 0 0 0 0 0 0 0 
Small4 Same 0 0 0 0 0 3 17 0 0 3 6 1 1 7 3 0 0 0 0 0 0 0 0 0 0 0 

Small5 Same 0 0 0 0 0 0 7 4 0 4 0 0 0 5 1 0 0 0 0 0 0 0 0 0 0 0 
Medium1 1 41 317 175 80 221 176 243 254 242 372 140 195 146 199 316 55 126 71 88 168 45 84 117 105 82 64 
Medium2 1 39 313 197 105 147 154 225 258 161 419 130 184 173 202.5 243 70 123 82 88 160 40 82 108 108 78 65 
Medium3 1 60 357 216 139 246 191 249 251 265 359 189 248 267 - 255 102 185 137 112 176 61 123 135 156 136 91 
Medium4  3 39 247 149 88 165 148 285 321 181 348 112 164.5 169 177.5 235 32 116 55 84 144 35 62 75 84 73 66 
Medium5 2 55 292 190 88 130 166 132 276 151 171 141 219.5 303 - 215 61 129 106 103 71 49 75 160 141 103 89 

large 3 463 926 912 730 529 798 1138 1027 - 1068 876 851.5 1166 - - 653 821 777 915 417 407 690 589 719 680 576 



 
 

In order to find out whether the performance of the PB-LS are different in term of solution 
quality when compared to other methods in the literature, again we carried out a 
Wilcoxon test between PB-LS and other methods. Since none of the compared method 
report the full details of the runs, the reported average value by other method were used 
in our test. Please note that only those reported the average values are considered in the 
comparisons. All methods are compared by means of pairwise comparisons. The 
confidence level is 95%. The null hypothesis assumes there is no difference between the 
compared methods. A p-value less than 0.05 means that there is a significant difference 
between these methods. Table 5 show the results of Wilcoxon test (P-value).  
 

Table 5 Wilcoxon test results (P-value) 
 

PB-LS  Vs. P-value 

[25] 0.010 

[26] 0.110 

[29] 0.003 
[12] 0.010 

[32] 0.004 

[35] 0.110 

[37] 0.026 

[7] 0.003 

[8] 0.004 

[9] 0.003 

 
According to the p-value in Table 5, for all compared algorithm, except [26] and [35], the 
reported p-value are less than 0.05 which mean our algorithm outperformed other 
methods. Although, our algorithm is not better than [26] and [35], according to Wilcoxon 
test, the results reported in Table 5 shows that in term of solution quality, our method 
outperformed [26] on 6 out of 6 instances and tieing with small instances (obtained same 
results for all small instances) and outperformed [35] on 5 out of 6 instances and tieing 
with small instances (obtained same results for all small instances).  
 
The positive results reported in Table 4 and 5, revealed that our method obtained 
competitive results compared to the best knows method and also outperformed them on 
some instances (medium1 to medium3). As a result, we may conclude that the use of 
population based helped PB-LS in obtaining good results. Also, PB-LS dose not employ 
a complex operator such as crossover operator which is usually need a repair mechanism 
to maintain the feasibility.  

6 Conclusions and discussion 

This work proposed a new population based (PB-LS) that is driven from Gravitational 
Emulation Local Search algorithm (GELS) idea. PB-LS can be embedded within any 
local search algorithm to overcome the limitation of population based algorithms. In 
order to evaluate the effectiveness of PB-LS with MPCA-ARDA, we tested PB-LS 



with MPCA-ARDA on Socha course timetabling benchmark dataset (Socha et al. 
2002). Results indicate that, PB-LS with MPCA-ARDA outperformed MPCA-ARDA 
and some other methods in the literature (with regards to method tested on Socha’s 
datasets). This is indicates that PB-LS is suitable for solving university course 
timetabling problems. 
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