

Population based Local Search for University Course
Timetabling Problems

Anmar Abuhamdah1, Masri Ayob1, Graham Kendall2 and Nasser R.
Sabar1

1Data Mining and Optimisation Research Group (DMO), Center for Artificial Intelligence
Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor, Malaysia

anmar@ftsm.ukm.my, masri@ftsm.ukm.my, naserdolayme@yahoo.com
2ASAP Research Group, School of Computer Science, The University of Nottingham,

Nottingham NG8 1BB, UK.
gxk@cs.nott.ac.uk

Abstract. This work proposes a population based heuristic that can be
embedded within any local search algorithm to solve university course
timetabling problems. Population based Local Search (PB-LS) employs two
main operators. The first is applied to a single solution to determine the force
between that solution and the current solutions, whilst the second is applied to
all solutions to determine the force in all directions. The progress of the search
through the search space is governed by the forces either in a single direction or
in all directions. The aim of our work is to produce an effective algorithm,
which can increase the diversity of local search algorithms and overcome the
limitations of other population based algorithms. In order to evaluate the
effectiveness of PB-LS, we perform a comparison between the performance of
PB-LS with other approaches in the scientific literature. We use university
course timetabling benchmark datasets as a test domain. Results show that, PB-
LS is able to produce statistically significant higher quality solutions that
outperforms many other approaches (in some instances with regards to Socha
dataset).

Keywords: Course Timetabling Problem; Particle Collision Algorithm;
Adaptive Randomized Descent Algorithm; Population Based Algorithm.

1 Introduction

Generally, university course timetabling problems involves assigning a set of courses
(events), teachers and students to a fixed number of timeslots and rooms subject to a
variety of constraints [1]. Constraints in a timetabling problem can be classified as
hard and soft [1]. The goal, when solving timetabling problems, is to satisfy all hard
constraints and attempt to accommodate the soft constraints as much as possible (in
order to produce high-quality timetable). All hard constraints must be satisfied to
obtain a feasible timetable, whilst soft constraints can be violated if necessary, but each
violation of the soft constraints will be penalized. The smaller the penalty value, the
better the quality of the timetable. University course timetabling problem has been
classified as an NP-hard problem; therefore it is difficult (in general) to find an optimal
solution (for larger size instances) in a reasonable time [2]. Finding good-quality

solutions to these problems depends on the methodology used and the problem
representation employed during the search [2].

In recent years, various approaches had been applied to solve university course
timetabling problems. These approaches include great deluge [3], simulated annealing
[4] tabu search [5] and randomized descent method [6].

A new approach to solve course timetabling problems based on multi-

neighbourhood particle collision algorithm (MPCA) [7] was recently proposed.
However, MPCA is a descent heuristic. The disadvantage of these methodologies is
that, they are incapable of escaping local optima [6]. Therefore, we extend our
previous work [7] by proposing an adaptive randomized descent algorithm (ARDA)
[8] that employs an adaptive criterion to escape from the local optima. We also
investigated hybridizing MPCA and ARDA [9] to overcome the limitations of MPCA.

However, MPCA-ARDA still has no diversification strategy, which motivated us

to use the concept of a population based algorithm due to their ability to explore wider
areas of the search space than local search algorithms [10]. Generally, the limitation of
many population based algorithms is in exploiting the search space [10], as most of
them are good at exploration rather than exploitation. Therefore, in this work, we
propose a population based heuristic (i.e. Population Based Local Search, PB-LS) to
overcome the limitations of a population based algorithm by increasing the ability of
the intensification process. This algorithm is also motivated by the idea of
Gravitational Emulation Local Search (GELS), which was proposed and developed by
Webster and Bernhard [11].

The aim of our work is to investigate the performance of applying the PB-LS with

MPCA-ARDA for solving university course timetabling problems. In order to evaluate
the effectiveness of the MPCA-ARDA, we make a comparison between the
performance of MPCA, ARDA, MPCA-ARDA as well as other approaches on Socha’s
university course timetabling datasets [12].

2 Problem Description

In this work, the eleven standard benchmark test datasets instances that were
introduced by Socha et al. [12] are used, which seek to optimise the students
satisfaction for the university course timetabling problem. The problem consists of:

 A set of Rooms R in which events can take place.
 A set of Events (courses) E to be scheduled in 45 timeslots (5 days of 9 hours

each with one hour for each timeslot).
 A set of Features F characterizing the rooms.
 A set of Students S who attend the events.

These datasets are categorized into three groups, small (S1, S2, S3, S4, S5), medium

(M1, M2, M3, M4, M5) and large (L) (see Table 1 and [12] for a detailed description).
Table 1 also shows, the number of students, events, room and features as well as the
conflict density (CD) for each dataset (representing the complexity), approximate
number of students enrolled in each event (Students/ Events), and the approximate

3

number of available rooms for each event (Rooms/ Events) which are calculated as in
[13].

Table 1. Eleven Datasets [12; 13]

These datasets have three hard constraints (Hc1, Hc2 and Hc3) and three soft

constraints (Sc1, Sc2 and Sc3), as follows:

(a) Hard constraints.
Hc1: No student attends more than one event at the same time.
Hc2: The room has to be large enough for all the attending students and has all

the features required by the event.
Hc3: Only one event takes place in each room in any timeslot.

(b) Soft constraints
Sc1: A student should not have a class in the last timeslot of the day.
Sc2: A student should not have more than two classes consecutively.
Sc3: A student should not have a single class on a day.

The quality of timetable is measured based on the number of soft constraints

violations. Each violation of the soft constraints will be penalized ‘1’ for each student
who is involved in this situation [12]. All hard constraints must be satisfied since we
only deal with feasible solutions, which is usually the case for the majority of research
in this domain.

3 Methodology overview

This works proposes a population based local search algorithm (PB-LS) for university

course timetabling problems. PB-LS starts with an initial solution and iteratively

explores its neighbour solutions, seeking for a better one. The neighbour solution is

obtained by modifying the current solution using one or more neighbourhood

structures.

3.1 Initial Solution

In this work, we use a constructive heuristic that was proposed in [16] to construct
initial solutions for course timetabling problems. The constructive heuristic has three

 Dataset
 #

Students
 #

Events
 #

Rooms
 #

Features CD
Students/
Events

Rooms/
Events

S1 80 100 5 5 10.96 4.98 0.82
S2 80 100 5 5 13.92 5.36 0.79
S3 80 100 5 5 9.71 4.65 1.00
S4 80 100 5 5 7.16 3.45 1.39
S5 80 100 5 5 15.10 5.99 1.17
M1 200 400 10 5 37.38 8.85 2.23
M2 200 400 10 5 37.66 8.84 1.91
M3 200 400 10 5 40.44 8.85 1.91
M4 200 400 10 5 37.50 8.81 1.88
M5 200 400 10 5 28.27 8.66 1.37
L 400 400 10 10 45.57 8.92 0.76

phases: largest degree heuristic, neighborhood search and tabu search. The
constructive heuristic starts with an empty timetable and successively invoke the three
phases to generate a feasible timetable. In the first phase, all unscheduled courses are
sorted based on the number of students they have in conflict with other courses. Then,
the one that has the highest number of conflicts compared to the other courses is
selected first. The selected course is then assigned to a feasible timeslot-room which
are selected randomly. If there is no feasible room for this course, it will be assigned
to any room. If all courses have been scheduled to timeslot-rooms, we ignore phases
2 and 3. Otherwise, phases 2 and 3 are invoked to achieve feasibility.

Phase 2, employs a simple decent algorithm to reduce the number of hard
constrain violations. The neighbourhood solution is generated by either moving one
course from its current timeslot-room into another timeslot-room, selected randomly,
or it randomly selects two courses and swaps their timeslots and rooms. In both cases,
the new solution is accepted if the move does not violate any hard constraints and the
quality of the generated timetable in terms of hard constraints violation is better than
the previous solution. Phase 2 is terminated after ten non improving iterations. If the
solution is feasible, we ignore phase 3, otherwise, phase 3 is invoked.

Phase 3, employs a tabu search algorithm that explores neighbouring solutions

similar to phase 2, but it also maintains a tabu list to prevent certain move been made
for a certain number of iteration. The size of the tabu list is calculated by tl =
rand(10)+δ * nc, where rand(10) is a random number between 0 and 10, nc is the
number of events that violate the hard constraints and δ is a constant which is set to
0.6 [16]. This phase will stop after 1000 non improving iterations.

3.2 Neighbourhood Structures

The proposed algorithm starts with an initial solution and iteratively improves it by
generating a neighbourhood solution using a set of neighbourhood structures. In this
work, we use eight neighbourhood structures (NS1-NS8) which have been widely
used in university course timetabling problem. These neighbourhood structures are
classified into two groups: i) common neighbourhoods (NS1-NS5 as in [14]) and ii)
shaking neighbourhoods (NS6 and NS8 as in [14], and NS7 as in [15]). Five of them
NS1-NS5 [14] are the same neighbourhoods utilised in ARDA [8]. In addition, we use
three other neighbourhood structures (NS6-NS8) to diversify the search (shake the
timetable). The neighbourhood structures are:

NS1: Randomly select two courses and swap their rooms and timeslots if feasible.
Otherwise swap their timeslots only, if feasible [14].

NS2: Randomly select two timeslots and swap all the courses in one timeslot with all
the courses in the other timeslot [14].

NS3: Randomly select four courses and swap timeslots and rooms of the first and
second courses with the third and fourth courses, if feasible.

NS4: Randomly select a course, timeslot and room, and then move the course
(reassign) to the new timeslot and room if feasible [14].

5

NS5: Randomly choose a course from the top 15% of the list (ordered based on the
penalty value in descending order) and randomly assign to other timeslot. Abdullah
[14] used this neighbourhood (NS5) but with 10% selection. The reason behind using
15% is to widen the search space.

NS6: Choose 15% of the courses in the list and randomly assign them to other feasible
timeslots. We use the same idea as NS5 but the difference is that, in NS5 we assign
one course only whereas in NS6 we assign 15% of the courses to diverse the search
(shake the timetable).

NS7: Randomly select two timeslots (t1 and t2) based on the largest enrolled (conflict)
events. Select the most conflicting event in t1 and t2 and then apply a kempe chain
move [15]. The main idea of the kempe chain neighbourhood is to move a chain of
course within the timetable while maintain the feasibility by swapping conflicting
courses until achieving feasibility.

NS8: Rotate two timeslots: Randomly select two timeslots (ti and tj), where ti > tj and
the timeslots are ordered t0, t1, …, t44. Take all the courses in ti

and allocate them to tj.

Now take the courses that were in tj

and allocate them to tj-1. Then allocate those that

were in tj-1

to tj-2

and so on until those courses that were in ti+1

are allocated to ti. This

neighbourhood structure was introduced by Abdullah [14].

4 Population based Local Search Algorithm

This work is motivated by the concept of population based algorithms due to their
ability to explore wider areas of the search space than using a local search algorithm
[10]. However, some limitations of population based algorithms are [17]:

 Ineffective exploitation of the solution space (intensification process), in
which there is no significant solution improvement.

 Solution combination methods to generate new solutions (e.g. crossover in
genetic algorithm) and mutation operator usually rely on randomization and
need a repair mechanism to use them effectively in constrained problems.

 The process of updating the population is usually performed randomly.
 Some algorithms do not have a memory as guidance for the search (e.g.

genetic algorithm and memetic algorithm).

The idea of the PB-LS is to enhance the performance of population based
algorithms by increasing the ability of the intensification process. This heuristic is
motivated by the idea of gravitational emulation local search (GELS).

The GELS algorithm is based on the natural principles of gravitational attraction
[11]. The reason for using gravity is to cause objects to be pulled towards each other.
The more massive an object, the more gravitational “pull” it exerts on other objects.
Also the closer two objects to each other, the stronger the gravitational forces are
between them. This means that a given object will be more strongly attracted to larger
and closer objects.

Previously the GELS algorithm was known as gravitational local search algorithm
(GLSA) and consisted of two versions: one that was based on the gravitational
attraction between two objects, and allowed navigation only to adjacent positions
within the solution space; the other was based on gravitational field attractions among
objects and allowed navigation to non-adjacent positions [11].

Both versions of GELS utilize the same gravitational force formula (see equation
1) but in slightly different ways [11]. The first version applies the formula to a single
solution (vector) within the local search neighbourhood to determine the gravitational
force between that solution and the current solutions. Whilst, the second version
applies the formula to all solutions (vectors) within the neighbourhood and calculates
the gravitational force between each of them and the current solution.

GELS simulates Newton’s formula of gravitational force between two objects [11]

(equation 1).

 F= G (CU - CA) / R2 (1)

Where F is the Force value representing the value of the gravitational force
between two objects (i.e. to enhance the difference between the quality of solutions),
G = 6.672, CU = objective function value of the current solution, CA = objective
function value of the candidate solution and R is the value of the parameter radius,
representing the middle point in the distance between two objects.

GELS has an intensification mechanism (improvement of a solution using a local
search). In GELS, there are two parameters to be tuned:
 Radius – sets the radius value in the gravitational force formula. It is used to

determine how quickly the gravitational force can increase or decrease.
 Iterations – defines the number of iterations for the algorithm before it is

terminated.

Therefore, in this work, we propose the PB-LS heuristic which overcomes some of

the limitation in GELS. In PB-LS, we propose a new formula to calculate the force
value as shown in formula 2 to overcome the issue of parameter Radius in GELS.

 F= CU - CA (2)

Where F is the Force value (in minimization problem), CU = objective function
value of the current solution and CA = objective function value of the candidate
solution.

Formula 2 differs from the formula 1, as GELS obtains real force value, whilst,
formula 2 does not employ any static parameters. Indeed there is no relation between
G (i.e. 6.672) and university course timetabling problem or the problems that GELS
has been applied to.

PB-LS start from zero velocity (i.e. direction value is zero) but will be updated

during the search process. In PB-LS, we only apply the first method. The procession
of the search through the search space is governed by the forces in a single direction
as determined by formula 2. In this work, we use MPCA-ARDA (as a local search) to

7

intensify the search since we already proposed MPCA-ARDA in [9]. Therefore, we
can compare the result of MPCA-ARDA against the PB-LS with MPCA-ARDA in
order to demonstrate the effectiveness of PB-LS approach.

Fig. 1 shows the pseudo code for PB-LS approach. Let So be a given initial

solution, Sbest be the best obtained solution, f(Sbest) be the quality of Sbest; f(So) be the
quality of So; N.iters be the number of maximum iterations; reset.iter be the number of
non-improving iterations required to reset the directions and update solutions; force be
the force value. In addition, we will also need to initialize the required parameters for
the local search method (in our case, we use MPCA-ARDA).

PB-LS starts with an initialization phase, where we initialize all the parameters

(see table 2), generate initial velocity vectors (by applying shaking neighbourhoods on
So). In our work, for the first iteration vv1, vv2 and vv3 are equal to the solutions
generated by NS6, NS7 and NS8 accordingly. Initially, the direction for all velocity
vectors is reset to 0 (see example in Fig. 2-a).

 In the improvement phase (Step2.1 in Fig. 1), at each iteration, we rearrange the

solutions in vv in descending order based on their direction values. Higher direction
value indicates the better potential for improving the solution rather than other
solutions in vv. If all directions values are different (see Step 2-1 in Fig.1), we choose
the solution that has the largest direction value (e.g. vv1 in Fig. 2-b) vvk and set is as S0
to be improved by local search (in our work, we use MPCA-ARDA) to produce S0*
until the stopping condition is met. In MPCA-ARDA, we use common neighbourhood
structures (NS1-NS5). If the solution S0* is accepted by the local search, the force
value is calculated using equation (2) is added (positive or negative) to the selected
direction and the selected solution in vv is replaced with the accepted solution.
Otherwise, we will increase the unimproved counter of the selected solution
(UnImprovek) by one. The best solution found Sbest will be updated with S0* if the
quality of S0* is better than S0. If the UnImprovek is equal to the predetermined
successive unimproved iterations, reset.iter (i.e. 10 in this work), then we reset the
direction of vvk to ‘0’ and replace vvk with the best neighbour generated from Sbest by
randomly generating some neighbours (i.e. 5 in this work) from shaking
neighbourhoods. Otherwise, we proceed with the next iteration. This mechanism
attempts to escape from a local optima and to diversify the search.

If some direction values are the same (Step2.2 in Fig. 1), e.g. vv2 and vv3 in Fig. 2-c,

we then perform step 2.1a) in Fig.1 to differentiate that directions for all solutions that
has similar direction value. This attempts to maintain a set of diverse solution.

The limitation of PB-LS approach is that, we need to determine the number of

reset.iter to reset the directions and update the solutions. Smaller reset.iter indicate
more exploration, whilst, biggest value indicate more exploitation.

Procedure PB-LS
Step 1: Initialization Phase
 Given an initial candidate solution So with f(So) as the quality of So;
 Set Sbest = So , f(Sbest)= f(So);
 Generate one neighbour solution of Sbest from each shaking neighbourhood;
 Initialize the velocity vector (vv), where vv1,vv2, vv3 ... vvN+1 =
 solution generated by each shaking neighbourhood;
 Set all the directions and un-improve counters (UnImprovek) for each vector in vv = 0;
 Set N.iters; (stopping condition);
 Set reset.iter (the number of iterations to reset the direction & update solutions);
 Initialize the required parameters for the Local Search Method;

Step 2: Improvement (Iterative) Phase
repeat

Arrange the vector in vv in descending order based on their direction value;
2.1 If the direction is clear // No duplication in the direction values

 Set So equal to the first vector in vv; // Select the best direction
Set k=1;

2.1a) Apply Local Search on So to produce So*;

Calculate the force value for the vvk using equation 2; //positive or negative
force with So as a current solution and So*as a candidate solution.

Update the direction value by adding force value to the direction of the vvk;
If f(So*) is better than f(Sbest), then Sbest= So*;
If f(So*) is better than f(S0), then set vvk = So*;
Else

Increase the UnImprovek of the vvk by one;
If UnImprovek = reset.iter;

Set the direction of vvk = 0;
UnImprovek=0;
Randomly generate one neighbour solution of Sbest from each shaking
neighbourhood and replace vvk with the best neighbour;

End If
End Else;

End if
2.2 Else ; // Improve all solutions that has similar direction value

Select all solutions in vv that have similar values and apply Step 2.1a) by
setting So and k index appropriately..

End Else;
 iterations=iterations+1;
until iterations> N.iters (termination condition is met)
Step 3: Termination phase (N.iters termination condition is met)
 Return the best found solution Sbest

Fig. 1. Pseudo code for PB-LS approach to solve university course timetabling problem

9

5 Experimental Results and Discussion

In this work, we have run our algorithm 20 times across 11 instances that were
introduced by Socha et al. [12]. The algorithm is run on PC with an Intel dual core 1.8
MHz, 1GB RAM. PB-LS parameters are shown in Table 2. For the small datasets, PB-
LS with MPCA-ARDA obtain results within 2 to 10 minutes. Whilst for the medium
and large datasets, PB-LS took within 10 to 13 hours to achieve the results.

Table 2. Parameters settings used in our PB-LS

Parameter Value
N.iters Termination condition (Number of Iterations) = 500,000.

reset.iter The number of iterations to reset the directions and update
the solutions= 10

VVN
The number of shaking neighbourhood structures = 3 (i.e. NS6,
NS7 and NS8)

Local Search MPCA-ARDA (number of iterations=?? as a stopping condition)

Table 2 shows that, PB-LS employ four parameters as follows: the first parameter
(N.iters) is determined based on the literature [18]. Whereas, the second parameter
(reset.iter) is determined as ‘10’ based on preliminary experiments. In the preliminary
experiments, we performed 5 runs for each of reset.iter equal to 5, 10, 15 and 20 and
found that the reset.iter=10 produce the best results. The third parameter (VVN) is

 Velocity
Vector

Penalties Directions
Value

vv1 400 0
vv2 405 0
vv3 420 0

 (a)

Velocity
Vector

Penalties Directions
Value

vv1 400 5
vv2 405 4
vv3 420 1

 (b)

Velocity
Vector

Penalties Directions
Value

vv1 400 5

vv2 405 4

vv3 420 4

 (c)

Fig. 2. Example on PB-LS approach

determined as ‘3’ based on number of shaking neighbourhood (in our case three
neighbourhood used are NS6, NS7 and NS8). The fourth parameter is the selection of
local search method.

As can be seen from Table 3, both algorithms obtained same results for small
instances (S1 to S5). This is because small instances are easy to solve. However, PB-
LS with MPCA-ARDA outperformed MPCA-ARDA in all medium and large
datasets.

In order to investigate the performance differences between PB-LS with MPCA-

and MPCA-ARDA, a Wilcoxon test is carried out with 95% confident level. The null
hypothesis assumes there is no difference between the compared methods. The p-value
less than 0.05 mean there is a significant difference between these methods. Table 3
shows the comparison between MPCA-ARDA and PB-LS with MPCA-ARDA. It
illustrates the best score (fmin), the average score (favg), the standard deviation (σ std)
for PB-LS with MPCA-ARDA algorithm and MPCA-ARDA algorithm as well as the
p-value of PB-LS- MPCA-ARDA (abbreviated as PB-LS) vs. MPCA-ARDA.

Table 3. Statistical analysis of PB-LS with MPCA-ARDA algorithm and MPCA-ARDA
algorithm.

Data Set
fmin

favg

Std. Dev.(σ)

PB-LS vs.
MPCA-
ARDA

PB-LS
MPCA-
ARDA

PB-LS
MPCA-
ARDA

PB-LS
 MPCA-
 ARDA

p-value

Small 1 0 0 0.65 1.00 0.75 0.86 0.071
Small 2 0 0 0.55 1.00 0.83 0.79 0.007
Small 3 0 0 0.95 1.15 0.89 0.81 0.392
Small 4 0 0 0.75 0.90 0.72 0.79 0.414
Small 5 0 0 0.60 0.95 0.68 0.83 0.008

Medium 1 41 64 52.75 75.35 7.55 6.99 0.000
Medium 2 39 65 54.80 78.05 9.01 8.04 0.000
Medium 3 60 91 80.85 106.00 14.73 8.65 0.000
Medium 4 39 66 49.50 79.35 7.74 8.32 0.000
Medium 5 55 89 65.05 104.05 7.54 9.99 0.000

large 463 576 483.20 593.50 16.69 11.89 0.000
Note: Bold in p-value indicate that PB-LS is significantly better than MPCA-ARDA.

From Table 3 one can see that, for all tested instances the p-value is less than 0.05,

which means that PB-LS is performed better than MPCA-ARDA, except in small 3 and
small 4 instances the difference is not significant. Again, this is because small instances
are easy and most of proposed method obtained very good results on these instances.
Fig. 3 shows the box and whisker plot details of the basic PB-LS with MPCA-ARDA.

11

Small5Small4Small3Small2Small1

p
e

n
a

lty
3.5

3.0

2.5

2.0

1.5

1.0

.5

0.0

Medium5Medium4Medium3Medium2Medium1

p
e

n
a

lty

110

100

90

80

70

60

50

40

30

Large

P
e

n
a

lty

530

520

510

500

490

480

470

460

450

Fig. 3. Box and whisker plot of PB-LS with MPCA-ARDA for all datasets

Fig. 3 shows that in most cases, PB-LS with MPCA-ARDA was capable of

producing good quality solutions, in all datasets (the medians are close to the best runs
solutions except in medium 2 and small4 datasets the median is close to the worst).

In general the result in Table 3 shows that, PB-LS with MPCA-ARDA
outperformed the MPCA-ARDA across all instances (with regard to fmin and favg).
Indeed, the standard deviation shows that PB-LS with MPCA-ARDA is more
consistent than MPCA-ARDA (in small1, small3, small5, medium4 and medium5
datasets). Generally, we can conclude that, the result in Fig. 3 and Table 3 showed that
PB-LS with MPCA –ARDA obtained good quality solution compared to MPCA-
ARDA. This demonstrates that the use of population of solution helps the algorithm in
diversifying the search space to get a better quality solution.

 Table 4 shows the comparison between our PB-LS (with MPCA-ARDA) and other
meta-heuristic searches that were tested on Socha benchmark datasets and we also
report the rank of our algorithm compared to the others. The best results are presented
in bold.

Results in Table 4 shows that of our algorithm outperformed other methods on
medium1, medium2, and medium3 instances. The best result of medium4 is obtained
by Abdullah and Turabieh [35] whilst, the best results of medium5 and large instance
is obtained by Turabieh et al. [18]. If we consider an individual comparison with these
two methods, our algorithm outperformed Abdullah and Turabieh [35] on 5 out of 6
instances and tieing with small instances (obtained the same results for all small
instances) and outperformed Turabieh et al. [18] on 3 out of 6 instances and also tieing
with small instances (obtained same results for all small instances with regard to the
best obtained soltuions). Also, the percentage deviation of our algorithm for medium4,
medium5 and large are 0.21, 0.122 and 0.13 which are very close to the best known
results for these instances.

Table 4. Comparison between our PB-LS with MPCA-ARDA and other approaches in the literature

Data Set Rank

PB-LS
with

MPCA-
ARDA

 [23] [24] [25] [26] [27] [28] [29] [30] [31] [14] [12] [32] [33] [34] [35] [36] [37] [37] [38] [18] [39] [40] [7] [8] [9]

Small1 Same 0 0 0 0 0 5 10 2 0 6 3 1 1 8 5 0 0 0 0 0 0 0 0 0 0 0
Small2 Same 0 0 0 0 0 5 9 4 0 7 4 3 2 11 3 0 1 0 0 0 0 0 0 0 0 0
Small3 Same 0 0 0 0 0 3 7 2 0 3 6 1 0 8 2 0 0 0 0 0 0 0 0 0 0 0
Small4 Same 0 0 0 0 0 3 17 0 0 3 6 1 1 7 3 0 0 0 0 0 0 0 0 0 0 0

Small5 Same 0 0 0 0 0 0 7 4 0 4 0 0 0 5 1 0 0 0 0 0 0 0 0 0 0 0
Medium1 1 41 317 175 80 221 176 243 254 242 372 140 195 146 199 316 55 126 71 88 168 45 84 117 105 82 64
Medium2 1 39 313 197 105 147 154 225 258 161 419 130 184 173 202.5 243 70 123 82 88 160 40 82 108 108 78 65
Medium3 1 60 357 216 139 246 191 249 251 265 359 189 248 267 - 255 102 185 137 112 176 61 123 135 156 136 91
Medium4 3 39 247 149 88 165 148 285 321 181 348 112 164.5 169 177.5 235 32 116 55 84 144 35 62 75 84 73 66
Medium5 2 55 292 190 88 130 166 132 276 151 171 141 219.5 303 - 215 61 129 106 103 71 49 75 160 141 103 89

large 3 463 926 912 730 529 798 1138 1027 - 1068 876 851.5 1166 - - 653 821 777 915 417 407 690 589 719 680 576

In order to find out whether the performance of the PB-LS are different in term of solution
quality when compared to other methods in the literature, again we carried out a
Wilcoxon test between PB-LS and other methods. Since none of the compared method
report the full details of the runs, the reported average value by other method were used
in our test. Please note that only those reported the average values are considered in the
comparisons. All methods are compared by means of pairwise comparisons. The
confidence level is 95%. The null hypothesis assumes there is no difference between the
compared methods. A p-value less than 0.05 means that there is a significant difference
between these methods. Table 5 show the results of Wilcoxon test (P-value).

Table 5 Wilcoxon test results (P-value)

PB-LS Vs. P-value

[25] 0.010

[26] 0.110

[29] 0.003
[12] 0.010

[32] 0.004

[35] 0.110

[37] 0.026

[7] 0.003

[8] 0.004

[9] 0.003

According to the p-value in Table 5, for all compared algorithm, except [26] and [35], the
reported p-value are less than 0.05 which mean our algorithm outperformed other
methods. Although, our algorithm is not better than [26] and [35], according to Wilcoxon
test, the results reported in Table 5 shows that in term of solution quality, our method
outperformed [26] on 6 out of 6 instances and tieing with small instances (obtained same
results for all small instances) and outperformed [35] on 5 out of 6 instances and tieing
with small instances (obtained same results for all small instances).

The positive results reported in Table 4 and 5, revealed that our method obtained
competitive results compared to the best knows method and also outperformed them on
some instances (medium1 to medium3). As a result, we may conclude that the use of
population based helped PB-LS in obtaining good results. Also, PB-LS dose not employ
a complex operator such as crossover operator which is usually need a repair mechanism
to maintain the feasibility.

6 Conclusions and discussion

This work proposed a new population based (PB-LS) that is driven from Gravitational
Emulation Local Search algorithm (GELS) idea. PB-LS can be embedded within any
local search algorithm to overcome the limitation of population based algorithms. In
order to evaluate the effectiveness of PB-LS with MPCA-ARDA, we tested PB-LS

with MPCA-ARDA on Socha course timetabling benchmark dataset (Socha et al.
2002). Results indicate that, PB-LS with MPCA-ARDA outperformed MPCA-ARDA
and some other methods in the literature (with regards to method tested on Socha’s
datasets). This is indicates that PB-LS is suitable for solving university course
timetabling problems.

References

1. S. Petrovic and E. K. Burke, “eds. J. Leung, University timetabling, Ch. 45 in the
Handbook of Scheduling: Algorithms, Models, and Performance Analysis,” Chapman
Hall/CRC Press, 2004.

2. A. Schaerf A, “A survey of automated timetabling,” Artificial Intelligence Review,
13(2):87-127, 1999.

3. E. K. Burke, Y. Bykov, J. Newall, and S. Petrovic, “A time-predefined approach to course
timetabling,” Yugoslav Journal of Operations Research (YUJOR), volume 13, number 2,
pp. 139-151, 2003.

4. MAS. Elmohamed, P. Coddington, and G. Fox, “A comparison of annealing techniques
for academic course scheduling,” Selected Papers from 2nd International Conference on
the Practice and Theory of Automated Timetabling (PATAT II), Toronto, Canada, Lecture
Notes in Computer Science 1408, Springer-Verlag., pp. 92-112, 1998.

5. D. Costa, “A tabu search for computing an operational timetable,” European Journal of
Operational Research, 76, pp 98-110, 1994.

6. A. Schaerf, “Local search techniques for large high-school timetabling problems,”
systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on
Volume 29, Issue 4, Jul 1999 pp. 368-377, 1999.

7. A. Abuhamdah and M. Ayob, “Multi-neighbourhood particle collision algorithm for
solving course timetabling problems,” Proceeding in 2009 2nd Conference On Data
Mining and Optimization, October, pp.21-27, Selangor, Malaysia, IEEE, 2009.

8. A. Abuhamdah, and M. Ayob, “Adaptive Randomized Descent Algorithm for Solving
Course Timetabling Problems,” in the International Journal of the Physical Sciences (IJPS
- 2010), volume 5(16), pp.2516-2522, December 2010.

9. A. Abuhamdah, and M. Ayob, “MPCA-ARDA for Solving Course Timetabling
Problems,” Proceeding of the 3nd Conference On Data Mining and Optimization (2011),
pp, 171-177, June 2011.

10. C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: Overview and
conceptual comparison,” ACM Computing Surveys (CSUR), volume 35, issue 3, pages.
268-308, ACM, 2003.

11. B.L. Webster, “Solving Combinatorial Optimization Problems Using a New Algorithm
Based on Gravitational Attraction,” Thesis submitted to the College of Engineering at
Florida Institute of Technology in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Science, 2004.

12. K. Socha, J. Knowles and M. Samples, “A max-min ant system for the university course
timetabling problem,” proceedings of the 3rd International Workshop on Ant Algorithms,
ANTS 2002, Springer Lecture Notes in Computer Science Vol 2463 (10), pp 1-13, 2002.

13. M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-Doria, “An effective hybrid
algorithm for university course Timetabling,” proceeding in Journal of Scheduling,
Volume 9, Number 5 / October, 2006, Springer Netherlands, pp. 403-432, 2006.

14. S. Abdullah, “heuristic approaches for university timetabling problems,” PhD Thesis, The
University of Nottingham. The School of Computer Science and Information Technology.
17-18, 2006.

17

15. J. M. Thompson, and K. A. Dowsland, “Variants of Simulated annealing for the
examination timetabling problem,” Proceeding Annals of Operations Research, volume
63, issue 1, pages. 105–128, 1996.

16. D. Landa-Silva and J.H. Obit, “Great deluge with non-linear decay rate for course
timetabling problems, 2008 4th International IEEE Conference Intelligent Systems, 978-1-
4244-1739-1, 2008.

17. H.H. Hoos, and T. Stutzle, “Stochastic Local Search: Foundations and Applications,”
Proceeding Mathematical Methods Of Operation Research, volume 63, number 1,
February, pages. 193-194, Elsevier/Morgan Kaufmann, San Francisco, 2006.

18. H. Turabieh, S. Abdullah, B. McCollum, and P. & McMullan, “Fish swarm intelligent
algorithm for the course timetabling problem,” proceeding Rough Set and Knowledge
Technology Conference (RSKT), Lecture Notes in Computer Science, volume 6401/2010,
pp.588-595, 2010.

19. R.A., Fisher, “Book of Statistical Methods for Research Workers. Chapter 6, the
correlation coefficient,” Edinburgh: Oliver and Boyd, pages. 43, 1925.

20. D. R. Anderson, D. J. Sweeney, and T. A. Williams, “Statistics for Business and
Economics (with Student CD-ROM, iPod Key Term, and InfoTrac),” South-Western
College Publishing, 2005.

21. M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables,” ninth dover printing, tenth gpo printing edn. New
York: Dover, 1964.

22. A. A. Afifi and S. P. Azen, “Statistical Analysis: A Computer Oriented Approach,”
Orlando, FL, USA: Academic Press, Inc, 1979.

23. S. Abdullah, E.K. Burke, and B. McCollum, “An Investigation of Variable
Neighbourhood Search for University Course Timetabling,” In. The 2nd Multidisciplinary
Conference on Scheduling: Theory and Applications (MISTA), July 18th-21st, pages.
413–427. New York, USA, 2005.

24. S. Abdullah and H. Turabieh, “Electromagnetic Like Mechanism and Great Deluge for
Course Timetabling Problems,” In the First 2008 Seminar on Data Mining and
Optimization DMO, volume. I, ISBN 9778-967-5048-36-4, pages. 21-25, 2008.

25. P. McMullan, “An extended implementation of the great deluge algorithm for course
timetabling,” ICCS. Proceedings of the 7th International Conference of Computational
Science, Part I, LNCS Lecture Note in Computer Science, Springer-Verlag Berlin
Heidelberg, Germany, volume 4487, pp.538-545, , 2007.

26. S. Abdullah, E. K. Burke and B. McCollum, “A hybrid evolutionary approach to the
university course timetabling problem,” In. Proceedings of the IEEE Congress on
Evolutionary Computation (CEC 2007), Singapore, pages. 1764–1768, 2007.

27. N. Ejaz and M. Javed, “A Hybrid Approach for Course Scheduling Inspired by Die-Hard
Co-Operative Ant Behavior,” Proceedings of the IEEE International Conference on
Automation and Logistics, August, pages. 3095 – 3100, Jinan, China, 2007.

28. H. Asmuni, E. K. Burke and J. M. Garibaldi, “Fuzzy multiple heuristic ordering for course
timetabling,” In. The Proceedings of the 5th United Kingdom Workshop on
Computational Intelligence (UKCI05), London, UK, pages. 302-309, 2005.

29. S. Abdullah and H. Turabieh, “Generating University Course Timetable Using Genetic
Algorithms and Local Search,” In Proceedings of the 2008 Third International Conference
on Convergence and Hybrid Information Technology , volume 1, pages. 254-260, 2008.

30. S. Abdullah, E. K. Burke and B. McCollum, “Metaheuristics - Progress in Complex
Systems Optimization. Operations Research/Computer Science Interfaces, chapter Using a
Randomised Iterative Improvement Algorithm with Composite Neighbourhood Structures
for the University Course Timetabling Problem,” volume 39, pages. 153–169. Springer
US, 2007.

31. E. K. Burke, A. Meisels, S. Petrovicand R. Qu, “A Graph-Based Hyper-Heuristic for
Timetabling Problems,” European Journal of Operational Research, volume 176, issue 1,
January, pages. 177-192, 2007.

32. E. K. Burke, G. Kendall and E. Soubeiga, “A tabu-search hyperheuristic for timetabling
and rostering,” In Journal of Heuristics, volume 9, number 6, pages. 451–470, 2003.

33. K. Socha, M. Sampels, and M. Manfrin, “Ant Algorithms for the University Course
Timetabling Problem with Regard to the State-of-the-Art,” Proceeding in the Third
European Workshop on Evolutionary Computation in Combinatorial Optimization
(EvoCOP 2003), Lecture Notes in Computer Science, 2003, volume 2611/2003, pages.
334-345, 2003.

34. M. A. Al-Betar, A. T, Khader and T. A. Gani, “A harmony search algorithm for university
course timetabling,” Proceedings the 7th International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2008), Montreal, Canada, August 18-22,
2008.

35. H. Turabieh and S. Abdullah, “Tabu based Memmetic approach, Incorporating Tabu
Search into Memetic approach for enrolment-based course timetabling problems (TS-
MA),” Proceeding in 2009 2nd Conference On Data Mining and Optimization, October,
pages. 115-119, , Selangor, Malaysia, IEEE, 2009.

36. D. L-. Silva and J. H. Obit, “Evolutionary nonlinear great deluge for university course
timetabling,” Proceedings of the 2009 International Conference on Hybrid Artificial
Intelligence Systems (HAIS 2009), Hybrid Artificial Intelligence Systems, Lecture Notes
in Computer Science, volume 5572/2009, pages.269-276, 2009.

37. J. H. Obit, D. L-. Silva, D. Ouelhadjand M. Sevaux, “Non-Linear Great Deluge with
Learning Mechanism for Solving the Course Timetabling Problem,” MIC 2009: The VIII
Metaheuristics International Conference, Hamburg, Germany, pages.id1-id10, 2009.

38. M. A. Al-Betar, A.T. Khader, and I.Y. Liao, “A harmony search with multi-pitch adjusting
rate for the university course timetabling,” Annals of Operations Research, Recent
Advances In Harmony Search Algorithm Studies in Computational Intelligence, volume
270, pp.147-161, 2010.

39. G. M. Jaradat and M. Ayob, “An elitist-ant system for solving the post-enrolment course
timetabling problem. In the 2010 International Conference on Database Theory and
Application (DTA 2010), Lecture Notes in Computer Science, Springer-Verlag Berlin
Heidelberg, pp.167-176, December 2010.

40. K. Shaker, and S. Abdullah, “Controlling multi algorithms using round robin for
university course timetabling problem. In the 2010 International Conference on Database
Theory and Application (DTA 2010), Lecture Notes in Computer Science, Springer-
Verlag Berlin Heidelberg, pp.47-55, December 2010.

