
 
Abstract—Hyper-heuristics are search methodologies that aim 
to provide high quality solutions across a wide variety of 
problem domains, rather than developing tailor-made 
methodologies for each problem instance/domain. A 
traditional hyper-heuristic framework has two levels, namely, 
the high level strategy (heuristic selection mechanism and the 
acceptance criterion) and low level heuristic (a set of problem 
specific heuristics). Due to the different landscape structures 
of different problem instances, the high level strategy plays an 
important role in the design of a hyper-heuristic framework. 
In this work, we propose a new high level strategy for the 
hyper-heuristic framework. The proposed high level strategy 
utilizes the dynamic multi-armed bandit-extreme value based 
rewards as an online heuristic selection mechanism to select 
the appropriate heuristic to be applied at current iteration. In 
addition, we propose a gene expression programming 
framework to automatically generate the acceptance criterion 
for each problem instance, instead of using the human 
designed ones. The generality of the proposed framework is 
demonstrated over eight well-known, and very different, 
combinatorial optimization problems, static (exam 
timetabling), dynamic (dynamic vehicle routing) and the six 
domains of the hyper-heuristic competition (CHeSC) test suite 
(boolean satisfiability (MAX-SAT), one dimensional bin 
packing, permutation flow shop, personnel scheduling, 
traveling salesman and vehicle routing with time windows 
problems). Compared with various well-known acceptance 
criteria, state of the art of hyper-heuristics and other bespoke 
methods, empirical results demonstrate that the proposed 
framework is able to generalize well across all domains. We 
obtain competitive, if not better results, when compared to the 
best known results obtained from other methods that have 
been presented in the scientific literature.  
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I. INTRODUCTION 

Over the years, meta-heuristics research communities 
acknowledged the fact that meta-heuristics configuration 
(operators and parameter settings) plays a crucial role on 
the algorithm performance [1], [2], [3]. Indeed, it has been 
shown that different meta-heuristic configurations work 
well for particular problem instances or only at particular 
stages of the solving process [4],[5]. Hence, the 
performance of any search method may be enhanced by 
automatically adjusting their configuration during the 
problem solving process in order to cope with different 
problem domains and/or instances [2], [3]. Within this 
context, automated heuristic design methods have emerged 
as a new research trend [4]. The ultimate goal of these 
methods is to automate algorithm design process as much 
as possible in such a way that they can work well across a 
diverse set of problem domains [1],[6]. Hyper-heuristics [4] 
represent one of these methods. They are a search 
methodology that is able to provide solutions to a wide 
variety of problem domains, rather than being tailored for 
each problem or problem instance encountered. Hyper-
heuristics operate on the heuristic search spaces, rather than 
operating directly on the solution space, which is usually 
the case with meta-heuristic algorithms [7]. The key 
motivation behind hyper-heuristics is to raise the level of 
generality, by drawing on the strengths, and recognizing the 
weaknesses, of different heuristics and providing a 
framework to exploit this. The most common hyper-
heuristic framework has two levels known as high level 
strategy and low level heuristic. The high level strategy 
manages which low level heuristic to call (heuristic 
selection mechanism) and then decides whether to accept 
the returned solution (the acceptance criterion). The low 
level contains a set of problem specific heuristics which are 
different for each problem domain. 

Generally, the success of a hyper-heuristic framework is 
usually due to the appropriate design of the high level 
strategy (heuristic selection mechanism and an acceptance 
criterion) and it is not surprising that much work in the 
development of hyper-heuristics is focused on the high 
level strategy [8]. The variety of landscape structures and 
the difficulty of the problem domains, or even problem 
instances, usually require an efficient heuristic selection 
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mechanisms and acceptance criteria to achieve good 
performance [4]. Both components (heuristic selection 
mechanism and acceptance criterion) are crucial and many 
works have shown that different combinations and 
configurations usually yield different performance [7], [8], 
[9].  

Therefore, in this work we address these challenges by 
proposing a new high level strategy for the hyper-heuristic 
framework with the following two components (see Fig. 1): 
 
i)  Heuristic selection mechanism: the proposed 

framework utilizes the dynamic multi-armed bandit-
extreme value based rewards [10] as an on-line heuristic 
selection mechanism. The attractive feature of a 
dynamic multi-armed bandit is the integration of the 
Page-Hinkly statistical test to determine the most 
appropriate heuristic for the next iteration by detecting 
the changes in average rewards for the current best 
heuristics. In addition, the extreme value-based rewards 
credit assignment mechanism records the historical 
information of each heuristic to be used during the 
heuristic selection process.  
 

ii) Acceptance criterion: instead of using an acceptance 
criterion manually designed by human experts (which 
usually requires ongoing tuning), we propose a simple 
framework to automatically generate, during the solving 
process, different acceptance criteria for different 
instances or problem domains as well as to consider the 
current problem state by using gene expression 
programming [11]. We choose gene expression 
programming to automatically generate the acceptance 
criteria for the hyper-heuristic framework due to its 
ability to always generate solutions that are syntactically 
correct and to avoid the problem of code bloat.  

 

 
Fig. 1. The proposed gene expression programming based hyper-heuristic 

(GEP-HH) framework. 

In the literature, automatic program generation methods, 
such as genetic programming (GP), have been successfully 
utilized as hyper-heuristic to generate heuristics for 
optimization problems such as 2D packing and MAX-SAT 
problems [7]. However, despite the success of GP based 
hyper-heuristics, the same hyper-heuristic cannot be used to 
generate heuristics to other domains such as exam 

timetabling or vehicle routing problems. This is because 
existing GP based hyper-heuristics are used to generate a 
specific heuristics for one domain only. Hence, the function 
and terminal sets that have been defined for one domain 
cannot be used to solve other domains. In other words, to 
solve a new problem domain we have to define a 
fundamentally different set of functions and terminals that 
can suit to the problem in hand. Based on this current level 
of generality, in this work, we propose a simple automatic 
program generation framework to automatically generate 
the high level strategy competent of the hyper-heuristic 
framework. The novelty of the proposed framework is it 
used at the higher level of abstraction and can tackles many 
optimization problems using the same set of functions and 
terminals. This feature distinguish our framework from 
existing GP based hyper-heuristics as they generate 
heuristics using a specific set of functions and terminals 
that are tailored to a given problem. In practice, evolving or 
optimizing algorithm components will not only alleviate 
user intervention in finding the most effective 
configuration, but can also facilitate algorithm 
configurations. In addition, besides the fact that manual 
configuration may only represent a small fraction from the 
available space, usually it needs a considerable amount of 
expertise and experience. Hence, exploring the search space 
using searching methods (i.e. GEP in this work) might yield 
a better performance compared to manual configuration. 
Our objectives are:  
 
- To propose an on-line hyper-heuristic framework that 

can adapt itself to the current problem state using a 
heuristic selection mechanism which integrates a 
statistical test to selecting the appropriate low level 
heuristics. 
 

- To propose a simple on-line framework to automatically 
generate, for each instance, an acceptance criterion that 
uses the current problem state, and that is able to cope 
with changes that might occur during the search process. 
This will be achieved using a gene expression 
programming algorithm. 
 

- To test the generality and consistency of the proposed 
hyper-heuristic framework on eight different problem 
domains (static and dynamic) and compare its 
performance against well-known acceptance criteria, the 
state of the art of hyper-heuristics and the best known 
bespoke methods in the scientific literature.  

 
Eight well-known combinatorial optimization problems, but 
with very different search space characteristics, are used as 
our benchmarks. Two of these problems are: the exam 
timetabling problem (ITC 2007 instances [12]) and the 
dynamic vehicle routing problem (Kilby instances [13]). 
Other six problem domains have been used in the first 
cross-domain heuristic search (CHeSC 2011) hyper-
heuristic competition [14]. These are: boolean satisfiability 
(MAX-SAT), one dimensional bin packing, permutation 
flow shop, personnel scheduling, traveling salesman and 
vehicle routing with time windows problems. To the best of 



our knowledge, this is the first work in the hyper-heuristic 
literature which has considered both dynamic and static 
problems. We would like to stress that, our intention is not 
to present a hyper-heuristic framework that can outperform 
all the existing bespoke methods, which are largely adapted 
for a specific problem or problem instance, but rather to 
demonstrate that the proposed hyper-heuristic framework 
can perform well across different, static and dynamic, 
problem domains, and which can exploit information of the 
current problem state. However, our results demonstrate 
that the proposed hyper-heuristic framework obtains 
competitive results (if not better for some instances), across 
all domains.  

II. HYPER-HEURISTICS AND RELATED WORKS  

Burke et al. [4] defined hyper-heuristic as “an automated 
methodology for selecting or generating heuristics to solve 
hard computational search problems”. Hyper-heuristics 
have been widely used, with much success, to solve various 
classes of problems. A traditional hyper-heuristic 
framework has two levels, a high and a low level.  

The high level strategies, which are problem independent 
and have no knowledge of the domain, controls the 
selection or generation of heuristics to be called (without 
knowing what specific function it performs) at each 
decision point in the search process. In contrast to meta-
heuristics, hyper-heuristics search the space of heuristics 
instead of directly searching the solution space. Thus, since 
exploring the heuristic space can be seen as a search 
problem and finding optimal solutions is usually 
impractical, there is still ongoing research interested in 
developing new frameworks [15] that can address the 
overall challenge of identifying the correct sequence to call 
the low level heuristics. The low level heuristics represent a 
set of problem dependent heuristics which operate directly 
on the solution space. 

 Generally, the high level abstraction of the hyper-
heuristic framework means that it can be applied to multiple 
problem domains with little (or no) extra development 
effort. Recently, Burke et al. [4] classified hyper-heuristic 
frameworks based on the nature of the heuristic search 
spaces and the source of feedback during learning. The 
source of feedback can either be on-line, if the hyper-
heuristic framework uses the feedback obtained during the 
problem solving procedure, or off-line, if  the hyper-
heuristic framework uses information gathered during a 
training phase in order to be used when solving unseen 
instances. The nature of the heuristic search spaces is also 
classified into two subclasses known as heuristics to choose 
heuristics and heuristics to generate heuristics. The 
classification specifies whether heuristics (either chosen or 
generated) are constructive or pertubative. Please note that 
our proposed hyper-heuristic can be classified as an on-line 
perturbative heuristic to choose heuristics framework. 

A. Heuristic to choose heuristics 

Most of hyper-heuristic frameworks published so far have 
been heuristics to choose heuristics [4]. For a given 
problem instance, the role of the hyper-heuristic framework 

is to intelligently choose a low level heuristic from the low 
level set, so as to apply it at that decision point. The idea is 
to combine the strengths of several heuristics into one 
framework. 

Meta-heuristics and machine learning methodologies 
have been used as heuristic selection mechanisms, for 
example tabu search with reinforcement learning [16]. 
Many different acceptance criteria have also been used, 
including all moves [17], only improvements [17], 
improving and equal [17], monte carlo [18], record to 
record travel [19], simulated annealing [20], [21], late 
acceptance [22], great deluge [23] and tabu search [24]. 
More details are available in [7]. 

Recently, the cross-domain heuristic search (CHeSC) 
competition was introduced, which provides a common 
software interface for investigating different (high level) 
hyper-heuristics and provides access to six problem 
domains where the low level heuristics are provided as part 
of the supplied framework [14]. The algorithm designer 
only needs to provide the higher level component (heuristic 
selection and acceptance criterion). Further details about the 
competition, including further results, are available in [14]. 

A possible drawback of the current high level strategies 
is that they use one criterion in evaluating the performance 
of each low level heuristic (previous performance) [7]. In 
addition, although in the scientific literature there are 
several variants of acceptance criteria mechanisms with 
different ways to escape from local optima (e.g. simulated 
annealing, tabu search and great deluge), most of them have 
one or more sensitive parameters that need to be carefully 
tuned [7]. Therefore, in this work, we propose a new high 
level strategy that uses dynamic multi-armed bandit-
extreme value based rewards to select the appropriate low 
level heuristic based on the current problem state and gene 
expression programming framework to generate for each 
instance different acceptance criterion.   

B. Heuristic to generate heuristics  

Heuristics that generate heuristics focus on designing new 
heuristics by combining existing heuristic components and 
then applying them to the current solution. Generative 
genetic programming hyper-heuristics have been utilized to 
solve many combinatorial optimization problems including 
SAT [25], timetabling [26], vehicle routing [26] and bin 
packing [27]. A recent review on hyper-heuristic is 
available in [7] which provides more details about this area.  

Although promising results have been achieved, GP has 
been utilized as an off-line heuristic/rule builder using a 
specific set of functions and terminals. Besides being 
computationally expensive due to the need of training and 
testing, they do not guarantee to deliver the same 
performance across different domains or even different 
instances of the same domain. This is because the generated 
heuristics/rules are suited to only the instance that has been 
used in the training phase. It is also impractical to manually 
design a new set of functions and terminals for each new 
problem and/or instance. This is because in most of real 
world applications only few data are available and 
randomly generated data that have been used during the 
training process may not reflect the real situation or 



different domains and/or instances. Furthermore, they are 
tailored to solve specific problems and were only applied to 
a single (static) domain, which raises the question of: to 
what extent they will generalize to other domains? 

The success of the above work, which has some 
resemblance to the proposed gene expression programming, 
is the main motivation for proposing an on-line gene 
expression programming framework to generate the 
acceptance criteria for the hyper-heuristic framework. The 
benefit of this framework is the ability to generate different 
acceptance criteria for different instances based on the 
problem state and thus enabling it to cope with changes that 
might occur during the solving process.   
 

III. THE PROPOSED FRAMEWORK  

We start by describing the proposed perturbative based 
hyper-heuristic framework, followed by the components of 
the high level strategy, i.e. the heuristic selection and 
acceptance criterion mechanisms. Finally, we explain the 
low level heuristics that will be used in our framework. 

A. A Perturbative based Hyper-heuristic Framework 

Our on-line perturbative based hyper-heuristic framework 
comprises of high level strategy and low level heuristics. 
The high level strategy consists of two components, 
heuristic selection and acceptance criterion. The goal of the 
high level strategy is to select a low level heuristic to be 
applied at a given time. The low level contains a set of 
perturbative heuristics that are applied to the problem 
instance, when called by the high level strategy. Therefore, 
based on the utilized low level heuristics, the proposed 
hyper-heuristic framework is an improvement based 
method as the hyper-heuristic starts with an initial solution 
and iteratively improves it using a set of perturbative low 
level heuristics. 

The proposed hyper-heuristic iteratively explores the 
neighborhood of the incumbent solution, seeking for 
improvement. Given a set of low level heuristics (LLHs), a 
complete initial solution, S, (generated either randomly or 
via a constructive heuristic) and the objective function, F, 
the aim of the hyper-heuristic framework is to select an 
appropriate low level heuristic and apply it to the current 
solution (S'=LLH(S)). Next, the objective function is called 
to evaluate the quality of the resultant solution (F(S')), 
followed by the acceptance criterion which decides whether 
to accept or reject S'. If the S' is accepted, it will replace S. 
Otherwise, S' will be rejected. The hyper-heuristic will 
update the algorithmic parameters and another iteration will 
start. This process is repeated for a certain number of 
iterations. In what follows we discuss the components of 
the proposed high level strategy.  

B. High level strategy 

In this work, we propose a new high level strategy, as 
shown in Fig. 2. It has two components: heuristic selection 
mechanism (dynamic multi-armed bandit-extreme value-
based rewards) and an acceptance criterion (gene 
expression programming). 
 

Fig. 2. The high level strategy within the proposed GEP-HH framework 

 
1) The heuristic selection mechanism 
 
The heuristic selection mechanism successively invokes 
two tasks, credit assignment (extreme value-based rewards 
[10]) and heuristic selector (dynamic multi-armed bandit 
mechanism [10]). Credit assignment mechanism maintains 
a value (reward) for each low level heuristic. Heuristic 
selector mechanism utilize the rewards assigned by the 
credit assignment mechanism to each low level heuristic to 
decide which low level heuristic will be applied at current 
decision point. 

a) The credit assignment mechanism: Extreme value-
based rewards 

The credit assignment mechanism maintains a value 
(reward) for each low level heuristic (LLH), indicating how 
well it has performed recently. The LLH will be rewarded 
during the search process if it finds a better solution or the 
solution is accepted by the employed acceptance criterion. 
In this work, the extreme value-based reward [10] is 
employed as the credit assignment mechanism. Low level 
heuristics, which are called infrequently, but lead to large 
improvements in solution quality, are preferred over those 
that only lead to small improvements, over a longer time 
frame. Low level heuristics which bring frequent, small 
improvements will be rewarded less and consequently have 
less chance of being selected [10].  

The extreme value-based reward mechanism works as 
follows. When a low level heuristic is selected, its 
improvement to the current solution is computed. In this 
work, the improvement (PILLH) of the applied low level 
heuristic to a current solution is calculated as follows: 
Assume f1 is the quality of the current solution and f2 is the 
quality of the resultant solution after applying the low level 
heuristic (LLH), PILLH = (f1-f2 /f1) * 100. The PILLH is then 
saved for that low level heuristic, at the corresponding 
iteration for a sliding time window of size W, using First in, 
First Out (FIFO), i.e. improvements of the selected low 
level heuristic in the last W iterations are saved. The credit 
of any low level heuristic (r) is then set as the maximum 
value in its corresponding sliding window as follows:  

 
(1) 

 
,1...max {( )}ii W LLHr PI



where W is the size of the sliding window. The size of the 
sliding window, W, controls the size of the gathered 
information. Based on our preliminary testing (see Section 
IV.A), it was found that when W=20 the hyper-heuristic 
performs well. We have thus fixed W=20 in all our 
experiments. 

b) Heuristic selector: Dynamic multi-armed bandit 
mechanism 

Based on their previous performance (assigned credit value 
by the credit assignment mechanism) and the number of 
times that the low level heuristics have been applied, the 
heuristic selection mechanism selects low level heuristics to 
be applied at the given solution. In this work, we use the 
dynamic multi-armed bandit (DMAB) mechanism as an on-
line heuristic selector mechanism [10]. The attractive 
feature of DMAB is the integration of the Page-Hinkly 
(PH) statistical test to detect the changes in average rewards 
of the current best low level heuristic. DMAB is based on 
upper confidence bound strategy which deterministically 
selects a low level heuristic with maximum accumulative 
rewards. A low level heuristic is selected based it is 
empirical rewards and the number of times it has been 
applied up to current time step.  

Formally, let k denote the number of available low level 
heuristics, each one having some unknown probability. 
DMAB selects the best low level heuristic that maximizes 
the accumulative rewards over time. In essence, each low 
level heuristic is associated with its empirical rewards qi,t 
(2) (the average rewards ri obtained by the i-th low level 
heuristic up to time t) and a confidence level ni,t (the 
number of times that the i-th low level heuristic has been 
applied up to time t).  
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where ri,t is the credit value (based on the credit assignment 
mechanism) of the i-th low level heuristic up to time t. At 
each decision point, the low level heuristic with the best 
confidence interval (maximum accumulative rewards) is 
selected to be applied to the current solution using (3). 
 

,1
1 ... ,

,

2 log
m ax

k

j tj
i k i t

i t

n
select q c

n




 
   
 

                         (3) 

 
where c is a scaling factor which controls the trade-off 
between the low level heuristic that has the best reward (the 
left term of equation (3)) and the one that has been 
infrequently applied (the right term of equation (3)).  

DMAB uses the Page-Hinkly (PH) statistical test to 
detect the changes in average rewards of the current best 
low level heuristics. If the current best low level heuristic is 
no longer the best one (i.e., changed detected), DMAB is 
restarted from scratch. The underlying idea is to quickly 
and dynamically identify new best low level heuristics, 
avoiding irrelevant information. Let αt represent the average 
reward of a low level heuristic over the last t time step, r 
represents the rewards of the i-th low level heuristic at time 

j, the PH test [10] uses equation (4) to detect the changes in 
average rewards. 
 
                                                                                           (4) 
 
where et is the difference between the current reward (rt) 
and the average reward (αt) of the i-th low level heuristic 
plus a tolerance parameter δ which is fixed to 0.15 (see 
Section A. GEP-HH Parameter Settings). mt is a variable 
that accumulates the differences et up to step t. PH 
recognizes that the change in the reward is detected when 
the difference (

1...max {| |} | |j t i tm m  ) is greater than a pre-

defined threshold γ (
1...m ax { | |} | |j t j tm m    ). 

 
2) The acceptance criterion mechanism  

The role of the acceptance criterion is to decide whether to 
accept or reject the solution that is generated once the 
selected low level heuristic has been applied [5, 8]. 
Accepting only improving solutions may lead the search 
into early stagnation. Accepting worse solutions may help 
the algorithm to escape from local optima, but may generate 
low quality solutions because the search never fully 
explores promising regions. A good acceptance criterion 
mechanism should be able to strike a balance between the 
two [5].  

In this work, we propose a gene expression programming 
framework to evolve the acceptance criterion for our hyper-
heuristic. It is implemented as an on-line acceptance 
criterion generation method that takes the quality of the 
previous solution, current solution and current state of the 
search process as input and returns the decision as to 
whether to accept or reject the solution. This removes the 
need for manual customization. It also contributes to the 
literature on the automatic generation of heuristic 
components that are able to avoid being trapped in confined 
areas of the search space and are able to work well across 
different problem domains/instances. In the following 
subsections, we presents the basic gene expression 
programming algorithm followed by the proposed 
framework to generate the acceptance criteria of the 
proposed high level strategy of the hyper-heuristic. 

a) Basic gene expression programming algorithm 

Gene expression programming (GEP) [11] is a form of 
genetic programming (GP) that uses the advantage of both 
genetic algorithms (GA) and genetic programming (GP) in 
evolving a population of computer programs. The attractive 
features of GEP, compared to GP, are its ability to always 
generate syntactically correct programs and avoid the 
problem of code bloat (a recognized problem in traditional 
GP) [11]. GEP uses a linear representation of a fixed size of 
strings called genomes (or chromosomes) which are 
translated into a parse tree of various sizes in a breadth-first 
search form. The parse tree is then executed to generate a 
program that will be used to solve the given problem. 
Instead of applying operators directly to the trees, as in 
genetic programming, GEP applies genetic operators 
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(crossover, mutation, inversion and transposition) directly 
to the linear encoding.  

The genomes in GEP represent a set of symbol strings 
called genes. Each one consists of two parts called head 
which contains both terminal and function symbols and tail 
which only contains terminal symbols [11]. Usually, the 
head length h is set by the user, whilst, the tail length tl is 
calculated by the formula tl = h*(n-1) +1, where n 
represents the maximum number of arguments of the 
functions.  

Consider a chromosome comprising of a set of symbols 
of function F = {*, /, +, -} and terminals T = {a, b}. In this 
example, n=2 because the maximum arity of the function is 
two arguments. If we set the head length h=10, then the tail 
length tl=11 and the chromosome length will be 
h+tl=10+11=21. Assume the solution (chromosome) is 
randomly generated, one possible example is as follows 
[11]: GEP_gene=+*ab-ab+aab+ababbbababb and its 
corresponding expression tree is: GEP_expression= 
a+b*((a+b)-a). 

There are five components in GEP, namely the function 
set (F), terminal set (T), fitness function, GEP parameters 
and stopping condition [11]. To evaluate the fitness of 
individuals, chromosomes are firstly translated into 
expression trees following the breadth-first form as follows 
[11]:  
 
- Scan the chromosome string one by one from left to 

right. 
- The first element represents the node of the 

corresponding tree and other strings are written in a left 
to right manner on each lower level. 

- If the scanned element is a function (F) with n (n>=1) 
arguments, then the next n elements are attached below 
it as its n children.  If the scanned element is a terminal 
(T), then it will form a leaf of the corresponding tree. 

This process is repeated until all leaves in the tree are from 
the terminal set (T) only. Next, the corresponding programs 
are executed on the user-defined problem, and their fitness 
values are calculated. 

Algorithm 1 presents the pseudocode of GEP. As in 
standard GA, GEP starts with a population of solutions 
(randomly generated). Each individual (chromosome) in the 
population employs the head-tail encoding method which 
ensures the validity of the generated solution. All 
chromosomes are then translated into expression trees, and 
executed to obtain their fitness values. Based on their 
fitness values, some individuals are selected by the 
selection mechanism (e.g. roulette wheel selection) to form 
the new generation by using the following genetic operators 
[11]: 
 
- Crossover: exchanges elements between two randomly 

selected genes from the chosen parents. Both one-point 
and two-point crossover operators can be used. In this 
work, a one-point crossover operator is employed. In 
one-point crossover, first randomly select a point in both 
parents and then swapped all data beyond the selected 
points between the parents.  

- Mutation: occurs at any position in the generated 
chromosome as long as it respects the gene rules such 
that the elements in the head part can be changed into 
both terminal and function, whilst, the elements in the 
tail part can be changed into terminals only. In this 
work, we use a point mutation operator. This mutation 
operator scans chromosome genes one by one and, 
based on the mutation probability, change the value of 
current gene in such a way that if the current gene is  in 
the head part it can be changed into both terminal and 
function, whilst, if it is in the tail part it can be changed 
into terminals only. 

- Inversion: reverses the sequence of elements within the 
head or tail. Based on the inversion probability rate, 
randomly select a point in either head or the tail of a 
given chromosome and reverses the sequence beyond 
the selected point.  

The newly generated chromosomes are then evaluated to 
calculate their fitness values, and added into the next 
generation. Following roulette wheel (or other) selection the 
fittest individuals are always copied into the next generation 
(i.e. elitism is employed). This process is executed until a 
stopping condition is satisfied.  
 

Algorithm 1: Pseudocode of GEP algorithm 
Set number of generations, populationsize, Headlength, Taillength, pcrossover, 
 pmuataion, Inversionsize 
population← initializepopulation(populationsize, Headlength, Taillength) 
foreach soli  population do 
            // translate the chromosome into expression tree// 
     soli-et  ←TranslateBreadthFirst(Soli-genes)  
          // execute the corresponding expression tree// 

     soli-cost ←execute (soli-et  )                  
end 
solbest ←SelectBestSolution(populationsize) 

while stopping condition not true  do 
                    // parent selection process // 

      parenti← SelectParents(populationsize) 
      parentj← SelectParents(populationsize) 
                         // crossover operator //

      child1←Crossover(parenti, parentj,pcrossover) 
      child2←Crossover(parenti, parentj, pcrossover) 
                        // mutation operator // 

      child1m← Mutation(child1, pmuataion) 
      child2m←Mutation(child2, pmuataion) 
                     // inversion operator // 

      child1-inversion←Inversion(child1m, Inversionsize) 
      child2-inversion  ← Inversion(child2m, Inversionsize) 
                // translated the chromosome into expression tree// 

      child1-et ← TranslateBreadthFirst(child1-inversion) 
      child2-et  ← TranslateBreadthFirst(child2-inversion ) 
            // execute the corresponding expression tree// 
      child1 -cost ←execute(child1-et) 
      child2 -cost ←execute(child2-et  ) 
                           //update the population // 

      population ← populationUpdateRWS (child1-cost, child2-cost) 
end  
return the best solution 

b) Gene expression programming algorithm for 
evolving acceptance criterion 

In this work, we propose a GEP framework to automatically 
generate the acceptance criterion which is specific to a 
given problem instance within the hyper-heuristic 
framework. A key decision in the design of the proposed 
GEP framework is the definition of the terminal set (T), 
function set (F) and the fitness function. 



In order to be able to use the proposed GEP framework 
across a variety of problems, we keep the definition of the 
terminal set (T), function set (F) and the fitness function as 
general, and simple, as possible. This ensures that the 
proposed framework can be used to solve different classes 
of problems rather than just those considered in this work, 
and can be easily integrated into other meta-heuristic 
algorithms. The function (F) and terminal (T) sets that have 
been used in the proposed GEP framework are presented in 
Table 1.  
 

TABLE 1 THE TERMINAL AND FUNCTION OF GEP-HH 
Terminals set  

terminal description  
delta The change in the solution quality 
PF The quality of the previous solution 
CF The quality of the current solution 
CI Current iteration 
TI Total number of iterations 

Function set  
function  description  

+ Add two inputs 
- Subtract the second input from the first one 
* Multiply two inputs 
ex The result of the child node is raised to its 

power (Euler’s number) 
% Protected divide function, i.e., change the 

division by zero into 0.001 

 
The main role of GEP is to evolve a population of 
individuals, each encoding an acceptance criterion. To 
assess the performance of an acceptance criterion, the 
hyper-heuristic framework is run on the given problem 
instance with the evolved acceptance criterion. Specifically, 
the proposed hyper-heuristic invokes the following steps: it 
calls the heuristic selection mechanism to select a low level 
heuristic, which is applied to the current solution, and 
calculates the quality of the generated solution. If the 
generated solution is better than the current one, the current 
one is replaced (accepted). If not, the hyper-heuristic will 
call the acceptance criterion that is generated by the GEP 
framework and execute the corresponding program. Then, 
the generated solution is accepted if the exponential value 
of the utilized acceptance criterion returns a value less or 
equal to 0.5 (the exp function returns values between 0 and 
1). Otherwise, the solution will be rejected (if the 
exponential value of the utilized acceptance criterion is 
greater than 0.5). In the literature, a value of 0.5 was 
suggested [27] but for different domains. In our work, the 
evolved programs in our hyper-heuristic framework are 
utilized as an acceptance criterion rather than as a 
constructive heuristic as in [27]. The value 0.5 was also 
determined based on preliminary testing. The proposed 
hyper-heuristic framework will keep using the utilized 
acceptance criterion, which is generated by GEP 
framework, for a pre-defined number of iterations (it stops 
after 10 consecutive non improvement iterations, 
determined by preliminary experimentation, see IV.A). 

When the stopping condition is satisfied, the performance 
of the utilized acceptance criterion is assessed by 
calculating its fitness function. The fitness function (FF), 
which is problem independent, is used to assess the 
performance of the current acceptance criterion.  

In this work, we adapt the idea that was used to control the 
population size in an evolutionary algorithm [28] to 
evaluate the fitness of the current acceptance criterion. The 
probability of each acceptance criterion is updated with 
respect to the quality of the best solution returned after the 
stopping condition is satisfied.  

Let Ac[] be the array of the fitness value of selecting the 
acceptance criterion, fi and fb represents the quality of the 
initial and returned solutions, NoAc represents the number 
of acceptance criteria, or the population size of GEP, 
respectively. Then, if the application of the i-th acceptance 
criterion leads to an improvement in the solution quality, 
the fitness of the i-th acceptance criterion is updated as 
follows: Ac[i]=Ac[i]+∆  where ∆=(fi - fb)/ ( fi + fb),  j
{1,…,NoAc} and  j≠i,  Ac[j]=Ac[j]-(∆/(NoAc-1)). Otherwise 
(if the solution cannot be improved), Ac[i]=Ac[i]-|(∆*α)| 
where α=Current_Iteration/Total_Iteration,  j
{1,…,NoAc} and  j≠i, Ac[j]=Ac[j]+(|∆|*α/(NoAc-1)). We 
decrease the fitness value of the other acceptance criteria 
(individuals) in order to decrease their chances of being 
selected. Initially, the fitness of each acceptance criterion is 
calculated by executing their corresponding program. 

C. Low level heuristics 

The low level of the proposed hyper-heuristic framework 
contains a pool of problem-specific heuristics. The aim of 
the low level heuristics is to explore the neighborhoods of 
the current solution by altering the current solution 
(perturbation). In this work, we have employed a variety of 
low level heuristics, all drawn from the scientific literature 
which have tackled these problems. Details of these 
heuristics are presented in the problem description sections 
(Sections IV-B-1-a and IV-B-2-a).  

IV. EXPERIMENTAL SETUP 

In this section, we discuss the parameter settings of GEP-
HH and briefly describe the considered combinatorial 
optimization problems that we used to evaluate GEP-HH. 
Please note that, to save space, some tables and figures are 
presented in a supplementary file. 

A. GEP-HH Parameter Settings 

Finding the best parameter values is a tedious, and time 
consuming task that often requires considerable expertise 
and experience [29], [30]. In this work, the Relevance 
Estimation and Value Calibration (REVAC) [29] is used. 
REVAC is a tool for parameter optimization that takes all 
parameters and their possible values, and suggests the 
appropriate value for each parameter. REVAC is utilized to 
find the generic values that can be used for all problem 
domains, instead of tuning the algorithm to each domain 
independently. In this work, we have used REVAC instead 
of other methods due to its ability to return an interval of 
values for each parameter rather than the best configuration  
[31]. By using the average value of each parameter, we can 
avoid over generalization to specific domain. Therefore, we 
tuned GEP-HH for each domain separately and then used 
the average of the minimum value for each parameter. 
Taking into consideration the solution quality as well as the 



computational time needed to achieve good quality 
solutions, the running time for each instance is fixed to 20 
seconds and the number of iterations performed by REVAC 
is fixed at 100 iterations (see [29] for more details). Table 2 
lists the parameter settings of GEP-HH that have been used 
across all problem domains. 

 
TABLE 2 GEP-HH PARAMETERS 

# Parameters 
Possible 
Range 

Suggested Value by 
REVAC 

1 Population size 5-50 10 
2 Number of generations 10-200 100 
3 Crossover probability 0.1-0.9 0.7 
4 Mutation probability 0.1-0.9 0.1 
5 Inversion rate 0.1-0.9 0.1 
6 Head length h 2-40 5 
7 Selection mechanism 

- 
Roulette Wheel 
Sampling with 

Elitism 
8 Crossover type Two/multi/ 

one point 
One point 

9 No. of consecutive non 
improvement 

0-100 10 

10 γ  in the PH test 1-50 14 
11 The scaling factor C 1-100 7 
12 The sliding window size W 2-100 20 
13 The tolerance parameter δ 0.1-1.00 0.15 

 

B. Problem Descriptions 

Eight well-known combinatorial optimization problems 
have been chosen as the test domains in this work. These 
are: exam timetabling, dynamic vehicle routing and the six 
problem domains of the first cross-domain heuristic search 
competition (CHeSC) [14]. Please note that all the 
considered problems are minimization problems and the 
values in the table represents the solution quality (the lower 
the better). 
 
1) Application I: Exam Timetabling 
The exam timetabling problem involves allocating a set of 
exams into a limited number of timeslots and rooms [32]. 
The allocation process is subject to a set of hard and soft 
constraints. The aim of the optimization process is to 
minimize soft constraint violations as much as possible and 
satisfy the hard constraints [32]. The quality of a timetable 
is measured by how many soft constraints, possibly 
weighted, are violated. In this work, we test GEP-HH on 
the recently introduced exam timetabling instances from the 
2007 International Timetabling Competition (ITC 2007) 
[12]. Tables 3 and 4 (see the supplementary file) present the 
hard and soft constraints, and Table 5 (see the 
supplementary file) shows the main characteristics of these 
instances. The proximity cost [12], which represents the 
soft constraint violations, is used to calculate the penalty 
cost (objective function value) of the generated solution.  

a) Exam Timetabling: Initial solution and the low 
level heuristics 

As mentioned in Section III-A, GEP-HH starts with a 
complete initial solution and iteratively improves it. The 
initial solution is generated by hybridizing three graph 
coloring heuristics proposed in [33].  

The set of low level heuristics, which are commonly used in 
the scientific literature [32], are as follows:  
 
Nbe1: Select one exam at random and move it to any feasible 

timeslot/room. 
Nbe2: Select two exams at random and swap their timeslots (if 

feasible). 
Nbe3: Select two timeslots at random and swap all their exams. 
Nbe4: Select three exams at random and exchange their timeslots 

randomly (if feasible).  
Nbe5: Move the exam leading to the highest soft constraint violation to 

any feasible timeslot. 
Nbe6: Select two exams at random and move them to any feasible 

timeslots. 
Nbe7: Select one exam at random, then randomly select another 

timeslot and apply the Kempe chain neighborhood operator.  
Nbe8: Select one exam at random and move it to a randomly selected 

room (if feasible). 
Nbe9: Select two exams at random and swap their rooms (if feasible). 

 
2) Application II: Dynamic Vehicle Routing Problems  

The dynamic vehicle routing problem (DVRP) [13] is a 
variant of the classical, and static, VRP [34], where the aim 
in both versions is to minimize the cost of routes to serve a 
set of customers. In contrast to the static VRP, where the 
problem information is known in advance, in DVRP not all 
information is known at the start, and changes might occur 
at any time. DVRP can be modeled as a VRP with the 
difference that new orders from customers might appear 
during the optimization process.  

The goal is to find a feasible set of routes that do not 
violate any hard constraints and minimize the travel 
distance as far as possible. The hard constraints that must 
be satisfied are [34]: i) each vehicle starts, and terminates 
its route at the depot, ii) the total demand of each route does 
not exceed the vehicle capacity, iii) each customer is visited 
exactly once by exactly one vehicle, and iv) the duration of 
each route does not exceed a global upper bound. The 
quality of the generated solution is represented as the total 
traveling distance (see [34] for more details).  

In DVRP, the problem information can be changed over 
time [13], [35], i.e. new orders are revealed over time. Such 
changes need to be included in the current schedule as 
follows: when new orders appear, they should be integrated 
into a current route or a new route is created for them. As a 
result, some customers in the current solution may be 
rescheduled in order to accommodate these changes. The 21 
DVRP instances that were originally introduced in [13] and 
further refined in [35] are used as the benchmark to assess 
whether the proposed hyper-heuristic framework can 
perform well on dynamic problems (see Table 6 in the 
supplementary file).   

In this work, we have used the same model presented in 
[36], [35], [37]. In this model, the DVRP is decomposed 
into a (partial) sequence of static VRPs and then they are 
successively solved by the proposed GEP-HH. The model 
parameters are presented in Table 7 (see the supplementary 
file), which is the same as in [36]. 



a) DVRP: Initial solution and the low level heuristics 

The initial feasible solution is constructed by generating a 
random permutation of orders which missed the service 
from the previous working day [37].  
The low level heuristics that we employ in GEP-HH for the 
DVRP instances are the most common ones used to solve 
the capacitated vehicle routing problems in the literature 
[34]. They are described as follows:  

 
Nbv1: Select one customer randomly and move it to any feasible 

route. 
Nbv2: Select two customers at random and swap their routes. 
Nbv3: Select one route at random and reverse a part of a tour 

between two selected customers. 
Nbv4: Select and exchange routes of three customers at random.  
Nbv5: Select one route at random and perform the 2-opt procedure. 
Nbv6: Perform the 2-opt procedure on all routes. 
Nbv7: Select two distinct routes at random and swap a portion of the 

first route with the first portion of the second route.  
Nbv8: Select two distinct routes at random and from each route select 

one customer. Swap the adjacent customer of the selected one 
for both routes. 

Nbv9: Select two distinct routes at random and swap the first portion 
with the last portion. 

Nbv10 Select one customer at random and move it to another position 
in the same route. 

 
The search space of GEP-HH is limited to the feasible 
region only.  
 
3) Application III: HyFlex problem domains   

In addition, the generality of GEP-HH is also verified using 
HyFlex software that has been used in the CHeSC 
competition [14]. HyFlex provides access to six problem 
domains with very different characteristics and real world 
application. These are: boolean satisfiability (SAT), one 
dimensional bin packing (BP), permutation flow shop (FS), 
personnel scheduling (PS), traveling salesman (TSP) and 
vehicle routing (VRP) [14]. 

For each problem domains, the problem dependent 
components such as the objective function, problem 
instances and the initial solution generation method are 
provided in HyFlex. Each problem domain contains 5 
instances and the total number of tested instances is 30. 
HyFlex also provides, for each problem, a set of different 
perturbative low level heuristics. The set of perturbative 
low level heuristics are classified into four types as follows: 
 

1. Mutational or perturbation heuristics: generate a new 
solution by modifying the current solution by 
changing, removing, swapping, adding or deleting 
one solution component. Mutation intensity is 
controlled by α, 0<= α <=1.  

2. Ruin-recreate (destruction-construction) heuristics: 
destroy a part of the current solution and recreate it 
in a different way to generate a new solution. The 
difference between ruin-recreate and mutational 
heuristics is that the ruin-recreate can be seen as 
large neighborhood structures and they use problem 
specific construction heuristics to recreate the 
solutions.  

3. Hill-climbing heuristics: iteratively perturb the 
current solution, only accept improving solutions, 
until a local optimum is found or a stopping 
condition is satisfied. The difference between hill-
climbing and mutational heuristics is that hill-
climbing is an iterative improvement process, 
accepting only improving solutions. The depth of 
search is controlled by β, 0<= β <=1. 

4. Crossover heuristics: take two solutions and produce 
a new one by combining them. 

 
More details about HyFlex problem domains can be found 
in [14].  

V. COMPUTATIONAL RESULTS AND DISCUSSIONS 

This section is divided into three subsections. First section 
is devoted to evaluate the effectiveness of GEP-HH 
components. In second section, we compare the results of 
GEP-HH with the state of the art of hyper-heuristic and 
bespoke methods published in the scientific literature. The 
third section discusses the performance of the GEP-HH 
across all the considered problem domains. 

In order to make the comparison as fair as possible, for all 
experimental tests, the execution time is fixed, with the 
stopping condition, determined as follows: 

 
 For exam timetabling [12] and HyFlex problem domains 

[14] the execution time is determined by using the 
benchmark software provided by the organizers to ensure 
fair comparisons between researchers using different 
platforms. We have used this software to determine the 
allowed execution time using our computer resources (i.e. 
10 minutes).  

 For dynamic vehicle routing, the execution time is fixed 
as in [36] and [37] (i.e. 750 seconds). We choose these 
two references as they represent the most recent methods 
applied to this problem and also the method in [36] is the 
only hyper-heuristic that has been tested on DVRP. 

To gain sufficient experimental data, for all experimental 
tests, we executed GEP-HH and the tested hyper-heuristic 
variants (implemented herein) for 51 independent runs with 
different random seeds for exam timetabling and DVRP 
problems and, 31 runs for the HyFlex domains (adhering to 
the competition rules [14]).  
 
A. Effectiveness evaluation of GEP-HH components 

This section is divided into two subsections. First section is 
devoted to evaluate the effectiveness of integrating the 
statistical test and extreme value-based reward into the 
selection mechanism. In second section, we investigate the 
effectiveness of the generated acceptance criteria by GEP. 
Accordingly, we have carried out two set of experiments as 
follows: first one is devoted to assess the benefit of 
integrating the statistical test and extreme value-based 
reward within the heuristic selection mechanism. Second 
experiment aims to evaluate the merits of the evolved 
acceptance criteria by the GEP framework against the well-



known acceptance criteria (implemented herein) in the 
scientific literature. 
 
1) Q1: Does the integration of the statistical test and 
extreme value-based reward into the heuristic selection 
mechanism have a positive impact? 

To answer this question, we removed statistical test and 
extreme value-based reward from the heuristic selection 
mechanism while keeping all the other part unchanged. 
Thus, the outcome will be four variants of heuristic 
selection mechanisms as follows: 
 
 DM1: the dynamic multi-armed bandit but without the 

Page-Hinkly statistical test and the extreme value-based 
reward credit assignment.  

 DM2: as above, but integrating the Page-Hinkly statistical 
test. 

 DM3: same as DM1, but use the extreme value-based 
reward credit assignment mechanism. 

 DM4: same as DM1, but use both the Page-Hinkly 
statistical test as well as the extreme value-based reward 
credit assignment mechanism. 

 
In addition, we also compare the performance of DM1, 
DM2 DM3 and DM4 with the following heuristic selection 
mechanisms that have been widely used in the literature [7]. 
Our aim is to justify why we have selected the dynamic 
multi-armed bandit-extreme value based rewards as an on-
line heuristic selection mechanism in this work instead of 
others. The considered heuristic selection mechanisms are:  
 
 R: a random selection mechanism, at each iteration, 

randomly selects one low level heuristic. 
 RW: a roulette wheel selection mechanism. Initially, all 

low level heuristics have the same chance of being 
selected. Then, the probability P of selecting the i-th low 
level heuristic (LLH) is calculated as follows :  

 
                                                                                   (5) 
 

where L is the number of low level heuristics. If the 
applications of the i-th low level heuristic leads to an 
improvement in the objective function, we reward the i-th 
low level heuristic (6) and punish others (7). Otherwise, 
we punish the i-th low level heuristic (8) and reward 
others (9).  
 

    (6) 
 
    (7) 

 
    (8) 
 
    (9) 
 

 
where fc is the quality of the current solution and fn is the 
quality of the solution after applying the selected low 
level heuristic. 

 CFM: the choice function heuristic selection mechanism 
(See [17] for more details). 

 
In total, there are seventh variants of heuristic selection 
mechanism (denoted as DM1, DM2 DM3, DM4, R, RW and 
CFM) used in the experiment and are tested on the ITC 
2007, DVRP and the HyFlex problem domains. To assure a 
fair comparison between the compared heuristic selection 
mechanisms (DM1, DM2 DM3, DM4, R, RW and CFM), 
the initial solution, number of runs, stopping condition, low 
level heuristics and computer resources are fixed for all 
experiments. In addition, the acceptance criterion of 
improving only (hill climbing) or equal is used with the 
seventh heuristic selection variants. Thus, the compared 
heuristic selection variants can be seen as several different 
hyper-heuristic frameworks. The main different between 
them is the employed heuristic selection mechanism only.  

The results obtained by the seventh heuristic selection 
variants (DM1, DM2 DM3, DM4, R, RW and CFM) for the 
eight problems are summarized in Table 8. The reported 
results are the average of the best, average (Ave) and 
standard deviation (Std) over all instances of each domain.  
All the considered problems are minimization problems and 
the values in the table represents the solution quality (the 
lower the better). From Table 8, one can clearly see that, 
DM4 outperformed other variants in term of best, average 
and standard deviation across the eight problem domains 
(best results are shown in bold). The results in Table 8 also 
reveal that the performance of other variants is different 
from one domain to another. This implies that each one of 
them is suited to one problem domains and/or some 
instances only.  

To further verify the effectiveness of the DM4, a 
Wilcoxon statistical test (pairwise comparisons) with a 
significance level of 0.05 is conducted. The p-value results 
demonstrate that DM4 is the best overall (see Tables 9, 10 
and 11 in the supplementary files). Indeed, DM4 is 
statistically better than other heuristic selection mechanisms 
(DM1, DM2 DM3, DM4, R, RW and CFM) on many 
instances of the considered problem domains (ITC 2007, 
DVRP and HyFlex problem domains). 

 

 
 
 

TABLE 8 THE AVERAGE PERFORMANCE COMPARISON OF THE COMPARED HEURISTIC SELECTION VARIANTS FOR ALL PROBLEM 
DOMAINS  

Domain # Name   DM1 DM2 DM3 DM4 R RW CFM 

1- 
Exam 

Timetabling 

Best 17140.63 13268.5 12736.5 8859.25 19377 16098 10368.75 
Ave. 19220.7 14273.05 13864.19 9637.929 22053.28 17375.82 11947.16 
Std. 1843.299 1013.084 992.5938 765.4538 2391.124 1199.213 888.9075 
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2- DVRP 
Best 2410.843 2382.941 2348.92 2298.141 2491.384 2391.425 2319.31 
Ave. 2579.486 2465.254 2519.222 2450.872 2743.53 2522.282 2478.058 
Std. 164.1548 133.6557 135.1805 123.0943 234.3795 139.189 125.2348 

3- MAX-SAT 
Best 6.6 3.6 5.8 2.6 4.2 3.8 5.8 
Ave. 22.912 15.78 19.178 13.026 15.762 14.29 14.314 
Std. 10.8 7.774 8.118 6.542 7.968 7.26 7.368 

4- Bin Packing 
Best 0.0531 0.03432 0.03612 0.03334 0.04704 0.03928 0.03584 
Ave. 0.07262 0.07634 0.06196 0.05396 0.10522 0.06374 0.05536 
Std. 0.05854 0.0221 0.02158 0.01702 0.06188 0.01942 0.02244 

5- 
Flow Shop 
Scheduling 

Best 15668 15465.6 15495 15468.4 15979.4 15490.2 15485.6 
Ave. 15730.29 15571.57 15590.65 15549.32 16277.22 15571.28 15578.49 
Std. 257.494 108.422 138.254 93.484 488.93 135.91 100.354 

6- 
Personal 

Scheduling 

Best 2967.4 2898.8 2896.6 2880.8 3000.2 2964.2 2890.8 
Ave. 3605.6 3442.742 3539.212 3437.486 3882.718 3517.064 3468.194 
Std. 715.302 564.186 720.636 526.784 942.978 583.914 535.878 

7- 
Travelling 
Salesman 

Best 4186981 4186802 4186799 4185776 4196051 4186803 4185894 
Ave. 4603859 4486248 4588936 4390375 4675219 4450383 4428025 
Std. 333208.5 302030.4 323771.1 244873.2 366664.2 314300.3 274560.1 

8- 
Vehicle 
Routing 

Best 78972.54 76793.68 76719.48 76582.62 79865.86 76877.54 76695.84 
Ave. 84219.32 81022.81 81005.14 80572.37 86780.34 81328.3 80776.38 
Std. 4129.266 3796.242 4159.764 3427.38 5168.286 4087.136 3765.318 

Note: Std: stands for standard deviation. Ave: strands for average. Bold fonts indicate the best results.  

 
Overall, this result provides evidence that both the Page-
Hinkly statistical test and the extreme value-based reward 
credit assignment mechanism contribute to the heuristic 
selection mechanism. This is because the Page-Hinkly 
statistical test helps the heuristic selection mechanism in 
identifying the appropriate low level heuristic to be applied 
by restarting heuristic selection mechanism from scratch if 
the current low level heuristic is no longer the best. This 
will avoid keep applying the low level heuristic with 
highest score as it may be poorly performing at the current 
state of solving process. The highest score achieved is 
usually due to its application at beginning of the search 
process. In addition, extreme value-based reward credit 
assignment mechanism helps the heuristic selection 
mechanism by saving the recent performance of the each 
low level heuristic to be used during the low level heuristic 
selection process. Therefore, DM4 is utilized in this work as 
an on-line heuristic selection mechanism instead of other 
heuristic selection mechanisms.  
 
2) Q2: Can we generate for each instance different 
acceptance criterion using GEP? 

To answer this question, we compared the results obtained 
by the generated acceptance criterion by GEP against four 
well-known acceptance criteria in the scientific literature. 
Our objective is to evaluate the impact of the evolved 
acceptance criterion by the proposed GEP framework when 
compared to other acceptance over different problem 
domains. The considered acceptance criteria are:  
 

Symbol Description 
IO-HH Improving only (hill climbing) or equal: the generated 

solution by the low level heuristics is accepted if it is equal, 
or of better quality, to the previous one [5].  

SA-HH Simulated Annealing: the generated solution by the low 
level heuristics is always accepted if it is of better quality. 
However, worse solutions are also accepted if they satisfy 
the probability acceptance function R < exp(-δ/t), where R 
is a random number between [0,1], δ is the change in the 
solution quality, δ = |f(generated solution) − f(current 
solution)| and t is the temperature of the system. t is 
gradually decreased by β. In this work, β is set to 0.85 and 

the initial temperature t = 50% of the value of the initial 
solutions, as suggested in [38].  

GD-HH Great Deluge: improved solutions generated by the low 
level heuristics are always accepted. Worse solutions are 
adaptively accepted if its objective value is less than the 
level which is initially set to the value of initial solution. 
During the optimization process, the value of level is 
gradually decreased by β. Β = (f(initial solution)- estimated 
(lower bound) / number of iterations) [5]. In this work, we 
set the number of iterations to 1000.  

TS-HH Tabu Search: solution generated by the low level heuristics 
are accepted without taking into consideration their quality 
[5]. Non improving low level heuristics are made tabu for a 
certain number of iterations (set to 7 as suggested in [38]). 
If the generated solution is better than the current one but 
its corresponding low level heuristic is in the tabu list, the 
solution will be accepted and the low level heuristic is 
released from the tabu list [5]. 

 
To ensure a fair comparison and meaningful analysis, 
throughout the experimental test, the heuristic selection 
mechanism (dynamic multi-armed bandit-extreme value 
based rewards), initial solution, the stopping condition and 
computer resources are fixed the same for all frameworks. 
The compared framework can be seen as several variants of 
hyper-heuristic frameworks. The difference between these 
frameworks is the utilized acceptance criteria only and they 
are denoted as GEP-HH, IO-HH, SA-HH, GD-HH and TS-
HH. 

The average of the best, average (Ave) and standard 
deviation (Std) produced by the five hyper-heuristic 
variants for all instances of the eight problem domains are 
reported in Table 12 (the detailed results for each problem 
domain are presented in Tables 13- 18 in the supplementary 
file). As can be seen, with the same computational time, 
across all problem domains, GEP-HH outperformed OI-
HH, SA-HH, GD-HH and TS-HH not only in terms of 
solution quality and average, but also on standard deviation. 
Indeed, GEP-HH is more consistent than OI-HH, SA-HH, 



GD-HH and TS-HH (small standard deviation produced by 
GEP-HH for all problem domains). 

To obtain more statistical information and to find out 
whether the performance of GEP-HH is statistically 
different from OI-HH, SA-HH, GD-HH and TS-HH, the 
Wilcoxon test [39] (pairwise comparisons) with a 
significance level of 0.05 was conducted. Table 19-21 (see 
the supplementary file) summarizes the p-value of the 
Wilcoxon test of GEP-HH versus OI-HH, SA-HH, GD-HH 
and TS-HH. For all tested instances, the results from GEP-
HH are statistically different (p-value < 0.05) from those 
obtained by OI-HH, SA-HH, GD-HH and TS-HH. This 
positive result supports the fact that GEP-HH produced 
much better results compared to OI-HH, SA-HH, GD-HH 
and TS-HH. In addition,   one can easily see that, the 
performance of OI-HH, SA-HH, GD-HH and TS-HH are 
quite different from one instance to another. This is mainly 
because each instance has different landscape structures and 

consequently OI-HH, SA-HH, GD-HH and TS-HH are tailor 
made to one or few instances, and thus work well across 
these instances only (we suspect due to the number of 
parameters that need to be tuned). 

To summarize, the favorable results achieved by GEP-
HH suggest that GEP-HH is more general and consistent 
when compared to IO-HH, SA-HH, GD-HH and TS-HH. In 
fact, the consistency of GEP-HH in producing good results 
over the ITC 2007, DVRP and HyFlex problem domains is 
mainly attributed to its ability in dealing with different 
instance landscape structures by generating for each 
instance different acceptance criterion during the instance 
solving process. Thus, the above observations are evidence 
that generating for each instance different acceptance 
criterion by using GEP can produce good results and 
generalize well over different problem domains instead of 
producing good results for one or just a few instances. 

 
TABLE 12 THE RESULTS OF GEP-HH COMPARED TO OI-HH, SA-HH, GD-HH AND TS-HH 

Domain # Name   GEP-HH IO-HH SA-HH GD-HH TS-HH 

1- 
Exam 

Timetabling 

Best 8657.625 9245.125 8739.25 8730.25 8934.25 
Ave. 8798.11 10293.34 9617.39 9839.72 10504.57 
Std. 81.60 716.51 419.06 546.67 701.79 

2- DVRP 
Best 2272.85 2297.62 2303.99 2295.19 2314.57 
Ave. 2342.88 2417.99 2419.78 2414.78 2425.22 
Std. 39.27 72.90 61.58 64.67 113.72 

3- MAX-SAT 
Best 4 6.4 4.6 6.8 5.8 
Ave. 11.474 18.376 17.166 20.368 18.54 
Std. 8.546 11.562 10.118 9.454 9.938 

4- Bin Packing 
Best 0.03662 0.046248 0.0384 0.03734 0.03968 
Ave. 0.05362 0.07248 0.06984 0.06184 0.06372 
Std. 0.0206 0.02998 0.02716 0.02124 0.023 

5- 
Flow Shop 
Scheduling 

Best 15422.8 15482.4 15450.6 15482 15466.8 
Ave. 15513.94 15782.98 15557.4 15571.88 15561.2 
Std. 89.318 294.02 115.974 113.692 122.83 

6- 
Personal 

Scheduling 

Best 2916.4 2982 2970.6 2949.8 2961.8 
Ave. 3188.11 3493.81 3626.49 3653.022 3606.182 
Std. 410.868 608.774 704.01 687.44 695.35 

7- 
Travelling 
Salesman 

Best 4204139 4224061 4225965 4209410 4216264 
Ave. 4351227 4477695 4495591 4691400 4621074 
Std. 255450 302350.9 316347.9 353686.2 398509.4 

8- 
Vehicle 
Routing 

Best 78578.86 80289.84 79176.72 79371.45 79545.88 
Ave. 81332.32 85753.21 83586.1 83450.86 83558.7 
Std. 3120.806 5401.072 4168.894 3443.634 4103.702 

Note: Std: stands for standard deviation. Ave: strands for average. Bold fonts indicate the best results. 

 
B. Comparing GEP-HH results with the state of the art 

This section presents the performance comparison between 
GEP-HH and the state of the art of hyper-heuristics as well 
as other bespoke methods that have been tested on ITC 
2007, DVRP and HyFlex problem domains. To do so, this 
section is divided into three subsections as follows. First 
section compares the computational results of GEP-HH for 
the ITC 2007 problem with the state of the art methods in 
term of three performance indicators, i.e., the best, average 
and statistical test. In second section, we compare the 
results of GEP-HH for the DVRP with state of the art 
methods from the best, average and statistical test 
perspective. Third section compares the best results of 
GEP-HH against the top five hyper-heuristic methods from 
the CHeSC competition. The ranking system used by 

CHeSC competition is also performed to calculate the score 
of GEP-HH and the top five hyper-heuristic methods.  
 
1) The comparison of GEP-HH results with the state of the 
art methods for ITC 2007 problem  

In this section, we assess the computational results of GEP-
HH against the best known results in the literature. The 
considered methods are: 
 
 The ITC 2007 winners :Witc1 [40], Witc2 [41], Witc3 [42], 

Witc4 [43] and Witc5 [44]) 
 The Post-ITC 2007 methods: hyper-heuristics (HHitc6 

[45], HHitc7 [46] and HHitc8 [47]) and bespoke methods 
(Bitc9 [48], Bitc10 [49] and Bitc11 [49]). 



The best and the instances ranking of GEP-HH results are 
presented and compared with the ITC 2007 winners and 
Post-ITC 2007 methods in Table 22 (best results are shown 
in bold). In addition, for each instance, the relative error in 
percentage (∆(%)) from the best known value found in the 
literature is also calculated, ∆(%)=a-b/b * 100, where a is 
the best result returned over 51 independent runs by GEP-
HH and b is the best known value found in the literature. It 
should be note that the execution time (i.e. 10 minutes) of 
all the compared methods (GEP-HH, ITC 2007 winners and 
post ITC 2007 methods) are determined by the benchmark 
software provided by the ITC 2007 organizers [12]. 

As Table 22 shows, GEP-HH provided new best results 
for 4 out of 8 instances. From Table 22, we infer that, 
although GEP-HH does not obtain the best results for all 
instances (Datasets 1, 4, 6 and 8), overall, the quality of 
solutions with regard to relative error is between 0.02 and 
0.09. In addition, GEP-HH obtained the second rank for 
these instances (Datasets 1, 4, 6 and 8). If we compare 
GEP-HH with the ITC 2007 winners, on 7 (except Dataset 
1) out of 8 instances, GEP-HH produces better quality 

solutions compared to the ITC 2007 winners. Compared to 
the hyper-heuristic methods in Table 22, we can see that, 
across all instances, GEP-HH outperforms other hyper-
heuristic methods (HHitc6, HHitc7 and HHitc8). In Table 23, 
we present the average results of GEP-HH and the 
compared methods. Please note that only those that reported 
the average results are considered in the comparison. As 
shown in Table 23, the average results of GEP-HH are 
better than other methods. Thus, we can conclude that the 
relative error and instance ranking reveal that GEP-HH 
generalizes well and obtains good results (with regard to 
ITC 2007 instances).  

To validate the performance of GEP-HH more 
accurately, we have also performed a multiple comparison 
statistical test [39] with regard to other methods (ITC 2007 
winners and Post-ITC 2007 methods). To do so, we 
performed Friedman and Iman-Davenport  tests with a 
critical level of 0.05 to detect whether there are statistical 
differences between the results of these methods [39]. 
 

 
TABLE 22 RESULTS OF GEP-HH ON THE ITC 2007 EXAM TIMETABLING DATASETS  

COMPARED TO ITC 2007 WINNERS and Post-ITC 2007 methods 
GEP-HH ITC 2007 Winners Hyper-heuristics  Bespoke methods 

Instances Best ∆ (%) Rank Witc1 Witc2 Witc3 Witc4 Witc5 HHitc6 HHitc7 HHitc8 Bitc9 Bitc10 Bitc11 
Dataset 1 4371 0.02 2 4370 5905 8006 6670 12035 6235 8559 6234 4775 4370 4633 
Dataset 2 380 * 1 400 1008 3470 623 3074 2974 830 395 385 385 405 
Dataset 3 8965 * 1 10049 13862 18622 - 15917 15832 11576 13002 8996 9378 9064 
Dataset 4 15381 0.08 2 18141 18674 22559 - 23582 35106 21901 17940 16204 15368 15663 
Dataset 5 2909 * 1 2988 4139 4714 3847 6860 4873 3969 3900 2929 2988 3042 
Dataset 6 25750 0.03 2 26950 27640 29155 27815 32250 31756 28340 27000 25740 26365 25880 
Dataset 7 4037 * 1 4213 6683 10473 5420 17666 11562 8167 6214 4087 4138 4037 
Dataset 8 7468 0.09 2 7861 10521 14317 - 16184 20994 12658 8552 7777 7516 7461 

Note: Best results are shown in bold. ∆ (%) represents the relative error in percentage from the best result. “*” means GEP-HH result is better than other 
methods. “-“ indicates no feasible solution has been found. 

 
TABLE 23 THE AVERAGE RESULTS OF GEP-HH COMPARED TO ITC 2007 WINNERS AND  

POST-ITC 2007 APPROACHES FOR THE ITC 2007 INSTANCES 
 GEP-HH Witc1 Witc2 Witc3 Witc5 HHitc8 Bitc9 

Instances Average Average Average Average Average Average Average 
Dataset 1 4392.82 4574.9 5914 9083.9 12819.2 6311 5032 
Dataset 2 395.70 414 1091 3669.4 3925.8 400 404 
Dataset 3 9060.19 10789.17 14336 19367.4 19812.1 13120 9484 
Dataset 4 15700.19 21639 21846 26346.8 25728.8 18011 19607 
Dataset 5 3020.58 3320.7 4167 4920.3 11176 3986 3158 
Dataset 6 25973.10 27808.5 28361 29935 34028.89 27420 26310 
Dataset 7 4203.29 4396.3 7010 11004.33 19669.3 6345 4352 
Dataset 8 7639.07 7950.3 10796 14869.9 16720.7 8624 8098 

Ave. Overall 8798.11 10111.61 11690.13 14899.63 17985.1 10527.13 9555.62 
Ave. Rnk 1 4 5 6 7 3 2 

Note: Bold fonts indicate the best results. Ave. Overall: the overall average for instances. Ave. Rnk: the 
overall average for all instances ranking. 

 
The p-value of Friedman (p-value=0.000) and Iman-
Davenport (p-value=0.000) are less than the critical level 
0.05. This implies that there is a significant difference 
between the compared methods (GEP-HH, ITC 2007 
winners and Post-ITC 2007 methods). As a result, a post-
hoc statistical test (Holm and Hochberg statistical tests) is 
used to detect the correct difference between the methods  
(see [39] for more details). Table 24 (see the supplementary 
file) summarizes the average ranking (the lower the better) 
produced by the Friedman test for each method. GEP-HH is 
ranked first with Bitc9, Witc1, HHitc8, Witc2, Witc3 and 

Witc5 ranking the 2, 3, 4, 5, 6 and 7, respectively. The 
adjusted p-values of Holm and Hochberg statistical tests for 
the GEP-HH (the control method) and others in Table 25 
(see the supplementary file) demonstrate that GEP-HH 
outperforms Witc5, Witc3 and Witc2 (3 out of 6 methods) 
with a critical level of 0.05 (adjusted p-value < 0.05) and 
better than Witc5, Witc3, Witc2, HHitc8 and Witc1 (5 out of 6 
methods) with a critical level of 0.10 (adjusted p-value < 
0.10). However, the results in Table 25 indicate that, GEP-
HH does not outperform Bitc9 (adjusted p-value > 0.10). 



To summarize, although the results of Holm and Hochberg 
statistical tests (Table 25) suggest that GEP-HH is not 
better than Bitc9, nevertheless, the results in Table 22 
reveals that GEP-HH outperformed Bitc9 on 7 out of 8 
instances and the average result in Table 23 is much better 
across all instances. It worth noting that all of the compared 
methods are tailor made to obtain the best results for one or 
few instances only, whilst, one can easily see that GEP-HH 
generalizes well across all instances. 

 
2) The comparison of GEP-HH results with the state of the 
art methods for DVRP 

In this section, we evaluate the performance of GEP-HH 
against the best available results in the scientific literature 
(Ant colony (ANT) [35], greedy randomize adaptive serach 
procedure (GRASP) [35], genetic algorithms (GA) [37], 
tabu search (TS) [37] and genetic hyper-heuristic (GA-HH) 
[36]) that have been tested on DVRP.  To our knowledge, 
only one hyper-heuristic method (GA-HH) has been tested 
on DVRP. The computational time of the compared 
methods is as follows: GEP-HH, GA, TS and GA-HH is 750 
seconds, whilst ANT and GRASP is 1500 seconds. Table 26 
gives the computational results of GEP-HH (best, the 
relative error (∆(%)) and instance ranking) along with best 
results obtained by other methods, while, Table 27 shows 
the average results obtained by GEP-HH as well as the 
compared methods (best results are shown in bold).  

Considering the best results in Table 26, we can see that 
GEP-HH achieved better quality results for 20 (except 
tai75b) out of 21 instances compared to GA-HH. Observing 
the best results of the bespoke methods (ANT, GRASP, GA 
and TS) reported in Table 26, GEP-HH outperformed the 
bespoke methods on 13 problem instances, while it is 
inferior on 8 instances. Even though GEP-HH does not 
outperform bespoke methods on all problem instances, the 
average results of GEP-HH (Table 27) are, however, much 
better than the bespoke methods across all instances, except 
instance tai75d where the average results achieved by GA is 
slightly better than GEP-HH. Considering an individual 
comparison, GEP-HH outperformed ANT, GRASP, GA and 
TS on 21, 21, 17 and 18 out 21 instances, respectively. In 
addition, the relative error from the best known results 

(Table 26) of GEP-HH for instance c100b, c150, c50, f71, 
tai100c, tai100d, tai75b, tai75c and tai75d which are 0.92, 
0.29, 1.77, 0.49, 0.67, 1.69, 0.05, 3.34 and 2.36, 
respectively, are relatively small. 

In addition to the above results, it is worth drawing some 
statistical significant conclusions regarding the performance 
of GEP-HH as well as the bespoke methods (ANT, GRASP, 
GA, TS and GA-HH). Therefore, multiple comparison 
statistical tests Friedman and Iman-Davenport with critical 
level of 0.05 are carried out, followed by a post-hoc 
statistical (Holm and Hochberg statistical tests) in case that 
the results of Friedman and Iman-Davenport are less than 
0.05. Thus, since the p-value of both tests is less than the 
critical level 0.05, we further analyze the result to detect the 
correct difference among the considered methods.  

Table 28 (see the supplementary file) shows the average 
ranking of GEP-HH as well as ANT, GRASP, GA, TS and 
GA-HH produced by Friedman test (the lower the better). 
From this table one can observe that, GEP-HH achieved the 
first rank out of the six compared methods followed by GA, 
GA-HH, TS, ANT and GRASP, respectively.  

Table 29 (see the supplementary file) gives the adjusted 
p-values of Holm and Hochberg statistical tests for each 
comparison between GEP-HH (the controlling method) and 
ANT, GRASP, GA, TS and GA-HH. The results of the 
adjusted p-values reveal the following: GEP-HH is 
statistically better than all of the bespoke methods (ANT, 
GRASP, GA and TS) as well as the hyper-heuristic method 
(GA-HH) with a critical level of 0.05. That is, no 
comparison of GEP-HH, with any method obtained an 
adjusted p-value equal to or higher than 0.05.  

Overall, the above result implies that GEP-HH 
outperforms the GA-HH hyper-heuristic and is competitive, 
if not better (on some instances), to some bespoke methods 
(ANT, GRASP, GA and TS). Also, it is worth noting that the 
compared methods are specifically designed to produce the 
best results for one or a few instances only. All of the above 
observations are evidence that GEP-HH is able to produce 
good quality results and generalize well over all instances, 
instead of producing good quality results for just a few 
instances. 

 
TABLE 26 THE BEST RESULTS OF GEP-HH ON DVRP INSTANCES COMPARED TO THE LITERATURE 
 GEP-HH ANT GRASP GA TS GA-HH 

Instances Best ∆ (%) Rank Best Best Best Best Best 
c100 957.157 * 1 973.26 1080.33 961.1 997.15 975.17 
c100b 890.11 0.92 2 944.23 978.39 881.92 891.42 956.67 
c120 1237.61 * 1 1416.45 1546.5 1303.59 1331.8 1245.94 
c150 1322.13 0.29 2 1345.73 1468.36 1348.88 1318.22 1342.91 
c199 1642.1 * 1 1771.04 1774.33 1654.51 1750.09 1689.52 
c50 581.05 1.77 2 631.3 696.92 570.89 603.57 597.74 
c75 956.17 * 1 1009.38 1066.59 981.57 981.51 979.25 
f134 14563.4 * 1 15135.51 15433.84 15528.81 15717.9 14801.55 
f71 281.62 0.49 2 311.18 359.16 301.79 280.23 288 

tai100a 2180.24 * 1 2375.92 2427.07 2232.71 2208.85 2227.51 
tai100b 2058.21 * 1 2283.97 2302.95 2147.7 2219.28 2183.35 
tai100c 1525.31 0.67 2 1562.3 1599.19 1541.28 1515.1 1656.92 
tai100d 1865.78 1.69 2 2008.13 1973.03 1834.6 1881.91 1834.4 
tai150a 3290.12 * 1 3644.78 3787.53 3328.85 3488.02 3346.08 
tai150b 2864.96 * 1 3166.88 3313.03 2933.4 3109.23 2874.83 
tai150c 2510.38 * 1 2811.48 3110.1 2612.68 2666.28 2583.04 
tai150d 2901.61 * 1 3058.87 3159.21 2950.61 2950.83 3084.52 



tai75a 1764.45 * 1 1843.08 1911.48 1782.91 1778.52 1769.67 
tai75b 1451.31 0.05 2 1535.43 1582.24 1464.56 1461.37 1450.44 
tai75c 1453.28 3.34 3 1574.98 1596.17 1440.54 1406.27 1685.15 
tai75d 1432.88 2.36 4 1472.35 1545.21 1399.83 1430.83 1432.87 

Note: Bold fonts indicate the best results. ∆ (%): represents the relative error in percentage from the best result obtained by 
other methods. “*” means GEP-HH result is better than other methods.  

 
TABLE 27 THE AVERAGE RESULTS OF GEP-HH COMPARED TO THE LITERATURE FOR DVRP INSTANCES 

 GEP-HH ANT GRASP GA TS GA-HH 
Instances Average Average Average Average Average Average 

c100 981.27 1066.16 1119.06 987.59 1047.6 1003.92 
c100b 900.79 1023.6 1022.12 900.94 932.14 1020.02 
c120 1338.04 1525.15 1643.15 1390.58 1468.12 1372.45 
c150 1348.88 1455.5 1501.35 1386.93 1401.06 1413.04 
c199 1675.10 1844.82 1898.2 1758.51 1783.43 1746.98 
c50 593.26 681.86 719.56 593.42 627.9 632.73 
c75 971.43 1042.39 1079.16 1013.45 1013.82 1019.01 
f134 14875.15 16083.56 16458.47 15986.84 16582.04 14921.24 
f71 289.41 348.69 376.66 309.94 306.33 299.59 

tai100a 2265.55 2428.38 2510.29 2295.61 2310.37 2309.98 
tai100b 2151.66 2347.9 2512.27 2215.39 2330.52 2221.37 
tai100c 1595.65 1655.91 1704.4 1622.66 1604.18 1756.2 
tai100d 1908.64 2060.72 2087.55 1912.43 2026.76 2029.37 
tai150a 3368.75 3840.18 3899.16 3501.83 3598.69 3487.85 
tai150b 2985.71 3327.47 3485.79 3115.39 3215.32 3068.75 
tai150c 2684.87 3016.14 3219.27 2743.55 2913.67 2731.05 
tai150d 2959.51 3203.75 3298.76 3045.16 3111.43 3251.97 
tai75a 1783.58 1945.2 2005.44 1856.66 1883.47 1859.17 
tai75b 1476.53 1704.06 1758.88 1527.77 1587.72 1502.07 
tai75c 1602.2 1653.58 1674.37 1501.91 1527.8 1779.14 
tai75d 1444.65 1529 1588.73 1422.27 1453.56 1445.84 

Ave. Overall 2342.88 2561.14 2645.84 2432.80 2510.75 2422.46 
Ave. Rnk 1 5 6 3 4 2 

Note: Best results are shown in bold. Ave. Overall: the overall average for all instances. Ave. Rnk: the overall average 
for all instances ranking. 

 
3) The comparison of GEP-HH results with the top five 
hyper-heuristics for the HyFlex problem domains 

This section compares the results of GEP-HH with the top 
five hyper-heuristics of the first cross-domain heuristic 
search challenge (CHeSC) [14] (AdapHH [50], VNS-
TW[51], ML [52], PHUNTER [53] and EPH [54]). Table 
30 shows the best, relative error (∆(%)) and instance 
ranking of GEP-HH compared to AdapHH, VNS-TW, ML, 
PHUNTER and EPH. Best results are shown in bold. Please 
note that, the execution time (i.e. 10 minutes) of all the 
compared methods (GEP-HH and the top five hyper-
heuristics) are determined by the benchmark software 
provided by the CHeSC organizers [14]. 

The results in Table 30 demonstrates that, GEP-HH 
produced better quality results for 2 instances, matched the 
best results on 5 instances and being inferior on 23 out of 
30 instances. This table also shows that, GEP-HH produced 
second best results for 5 instances, third best results for 4 
instances, fourth best results for 9 instances and sixth best 
results for 5 instances. If we considering an individual 

comparison, GEP-HH outperformed AdapHH, VNS-TW, 
ML, PHUNTER and EPH on 7, 13, 6, 13 and 14 out of 30 
instances, respectively. 

In addition to the above results, we also calculated GEP-
HH score when compared to the top five hyper-heuristic 
methods using the ranking system used by CHeSC [14] 
using the meadian results (Table 31 see the supplementary 
file ). The ranking score (the higher, the better) of GEP-HH 
and the top five hyper-heuristics for the HyFlex six problem 
domains (MAX-SAT, BP, FS, PS, TSP and VRP) is 
presented in Table 32. Last column in Table 32 indicates 
the overall rank. The result in Table 32 reveals that GEP-
HH achieved third, fourth, third, third, fourth and third rank 
for the SAT, BP, FS, PS, TSP and VRP domains, 
respectively. Based on the overall rank, GEP-HH obtained 
the fourth rank among the compared hyper-heuristic 
methods. According to above results, GEP-HH produced 
competitive results for the HyFlex problem domains. 
 
 

 
Table 30 The best result of GEP-HH compared to the top five hyper-heuristics for the HyFlex problem domains  

 
Instances 

GEP-HH The top five hyper-heuristic frameworks from CHeSC competition 
Best  ∆(%) Rank AdapHH VNS-TW ML PHUNTER EPH 

M
A

X
-

S
A

T
 

SAT 1 2 100 2 1 1 1 1 4 
SAT 2 6 500 4 3 1 3 5 5 
SAT 3 1 = 1 1 1 1 2 2 
SAT 4 4 300 2 1 1 4 4 5 
SAT 5 7 = 1 9 7 7 7 7 

B
i n P

BP 1 0.0346 164.12 4 0.0131 0.0298 0.0323 0.0397 0.0430 
BP 2 0.0067 139.28 4 0.0028 0.0036 0.0067 0.0034 0.0034 



BP 3 0.0135 3275 4 0.0004 0.0136 0.0124 0.0178 0.0080 
BP 4 0.1085 0.18 3 0.1083 0.1087 0.1084 0.1088 0.1083 
BP 5 0.0198 538.7 4 0.0031 0.0238 0.0178 0.0318 0.0136 

F
lo

w
 S

h
op

 FS 1 6224 0.16 3 6214 6230 6226 6221 6232 
FS 2 26748 0.03 3 26757 26765 26744 26786 26738 
FS 3 6303 = 1 6303 6303 6304 6303 6309 
FS 4 11325 0.06 2 11318 11333 11338 11336 11328 
FS 5 26514 * 1 26541 26535 26559 26600 26569 

P
er

so
n

n
el

 
S

ch
ed

u
lin

g PS 1 11 = 1 17 13 11 13 16 
PS 2 9726 4.05 6 9435 9347 9436 9624 9747 
PS 3 3200 2.43 6 3142 3124 3138 3142 3142 
PS 4 1360 0.74 2 1448 1370 1384 1350 1469 
PS 5 285 * 1 295 290 300 290 310 

T
ra

ve
li

n
g 

S
al

es
m

an
 TSP 1 48194.9 = 1 48194.9 48194.9 48194.9 48194.9 48194.9 

TSP 2 20845969.6 0.44 4 20752853.8 2084855.6 20793219.8 20754199.8 20941645.1 
TSP 3 6805.8 0.14 4 6797.5 6796.0 6805.3 6796.0 6799.2 
TSP 4 66549.8 0.89 4 66277.1 66830.2 66428.2 66641.4 65958.6 
TSP 5 53174.4 2.15 6 52383.8 52896.5 52626.7 52172.0 52053.4 

V
eh

ic
le

 
R

ou
ti

n
g VRP 1 69895.6 20.4 6 58052.1 68340.4 67622.1 61139.3 63932.2 

VRP 2  13312.9 8.56 6 13304.9 13298.1 13298.4 12263.0 13284.0 
VRP 3 142562.5 0.03 2 145481.5 144012.6 142517.0 143663.9 143510.8 
VRP 4 20651.9 0.005 3 20652.3 20651.1 20651.1 20650.8 20650.8 
VRP 5 146471.4 0.33 4 146154.0 146513.6 146200.8 146472.9 145976.5 

Note: ∆(%): the relative error from the best value obtained by other method. “*” means GEP-HH result is better than other methods. 
“=” means GEP-HH matched the best results. 

 
Table 32 The ranking score of GEP-HH and the top five hyper-heuristics  

# HH SAT BP FS PS TSP VRP Overall Score 
1 AdapHH 34.25 45 34.5 8 38.75 14 174.5 
2 VNS-TW 34.25 3 30 35.5 15.75 4 122.5 
3 ML 12.85 12 35.33 29 12 21 122.19 
4 GEP-HH 10.85 4 33.83 23 16 17 104.69 
5 PHUNTER 8.35 3 6 9.5 23.75 31 81.60 
6 EPH 0.0 9 16 8.5 34.75 12 80.25 

 
C. Discussion 

The numerical results presented throughout this work 
demonstrate that, across different combinatorial 
optimization problems (exam timetabling, dynamic vehicle 
routing and HyFlex problem domains) with fundamentally 
different search spaces (static and dynamic), GEP-HH 
achieved favorable results compared to the best available 
methods in the literature. The improvements achieved by 
GEP-HH across the considered problem domains are 
evidence that GEP-HH is consistent and generalizes well 
over all problem domains. The above results establish that, 
on some instances, GEP-HH has better performance than 
the best available methods in the literature. Hence, a 
fundamental question naturally arises: why GEP-HH 
obtains such results? We hypothesis that the capability of 
GEP-HH in dealing with different problem domains and 
achieving such results is due to the following two factors:  

 
1- The ability of the proposed gene expression 

programming algorithm to generate, for each instance, 
different acceptance criterion during the optimization 
process. Due to the fact that some instances of the 
considered problem domains have a large search space, or 
the search spaces are rugged and contain many local 
optima because of the imposed constraints, it might be 

that feasible regions are isolated by infeasible ones. 
Therefore, by generating for each instance different 
acceptance criterion during the instance solving process, 
the hyper-heuristic is capable of escaping from the local 
optima as well as effectively exploring the entire search 
space. Generating algorithm components can reduce the 
user intervention in finding the most effective 
configuration and the facilitate algorithm configurations. 
To summarize, the success of GEP-HH on all problem 
domains validated our hypothesis in using GEP-HH to 
automatically evolve the hyper-heuristic acceptance 
criteria instead of using the human designed ones such IO, 
SA, GD and TS. 

 
2- Is partly due to the integration of the Page-Hinkly 

statistical test as well as the extreme value-based reward 
credit assignment mechanism in the heuristic selection 
mechanism. As shown and analyzed throughout the 
results section, the use of the Page-Hinkly statistical test 
and extreme value-based reward credit assignment 
mechanism with the heuristic selection mechanism has a 
positive impact and produced good results compared to 
other heuristic selection mechanisms. Therefore, the good 
results obtained on all the considered problem domains 
validated our hypothesis that these two components help 



the heuristic selection to quickly select the suitable low 
level heuristics during the instance solving process. 

VI. CONCLUSIONS  

The work presented in this paper has proposed a new 
improvement based hyper-heuristic framework, gene 
expression programming based hyper-heuristic (GEP-HH), 
for combinatorial optimization problems. GEP-HH has two 
levels, a high level strategy and a low level heuristic. The 
latter consists of a set of human designed low level 
heuristics that are used to perturb the solution of a given 
instance. The former has two components, the heuristic 
selection mechanism and the acceptance criterion. The 
dynamic multi-armed bandit-extreme value based rewards 
is utilized at the higher level to perform the task of selecting 
a low level heuristic. Gene expression programming is used 
as an on-line method to generate the acceptance criterion in 
order to decide if the generated solution is accepted or not.  

This work has shown that it is possible to use a heuristic 
selection mechanism that utilizes a statistical test in 
determining the most suitable low level heuristic as well as 
generating a different acceptance criterion for each problem 
instance. The efficiency, consistency and the generality of 
GEP-HH has been demonstrated across eight challenging 
problems, a static problem (exam timetabling), a dynamic 
problem (dynamic vehicle routing problems) and the 
HyFlex problem domains (boolean satisfiability, one 
dimensional bin packing, permutation flow shop, personnel 
scheduling, traveling salesman and vehicle routing), which 
have very different search spaces. The experimental results 
show that GEP-HH achieves highly competitive results, if 
not superior to other methods, and that it generalizes well 
over all domains when compared to other well-known 
acceptance criteria (IO, SA, GD and TS) as well as state of 
the art of hyper-heuristics and bespoke methods. The main 
contributions of this work are: 

 
- The development of the GEP-HH framework that 

utilizes an on-line heuristic selection mechanism which 
integrates a statistical test, demonstrating that this 
selection mechanism is capable of selecting the most 
appropriate low level heuristics using information 
gathered during the instance solving process. 
    

- The development of a framework to generate an 
acceptance criterion that can be integrated with any 
hyper-heuristic or meta-heuristic method, using gene 
expression programming. This framework generates, for 
each instance, a different acceptance criterion during 
instance solving and obtains consistent, competitive 
results that generalize well across eight different 
problem domains.  
  

- The development of a hyper-heuristic framework that is 
not customized to specific problems classes and can be 
applied to different problems without much 
development effort (i.e. the user  only needs to replace 
the set of low level heuristics).  

In this work, we have proposed an automatic programing 
generation method to generate the of the high level strategy 
component. In future work, we would also like to 
investigate generating the low level heuristics and, perhaps, 
placing them in competition with one another. If this were 
successful, we will have a complete framework that is able 
to tackle any problem, with very little human intervention 
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