

Abstract—Hyper-heuristics are search methodologies that aim
to provide high quality solutions across a wide variety of
problem domains, rather than developing tailor-made
methodologies for each problem instance/domain. A
traditional hyper-heuristic framework has two levels, namely,
the high level strategy (heuristic selection mechanism and the
acceptance criterion) and low level heuristic (a set of problem
specific heuristics). Due to the different landscape structures
of different problem instances, the high level strategy plays an
important role in the design of a hyper-heuristic framework.
In this work, we propose a new high level strategy for the
hyper-heuristic framework. The proposed high level strategy
utilizes the dynamic multi-armed bandit-extreme value based
rewards as an online heuristic selection mechanism to select
the appropriate heuristic to be applied at current iteration. In
addition, we propose a gene expression programming
framework to automatically generate the acceptance criterion
for each problem instance, instead of using the human
designed ones. The generality of the proposed framework is
demonstrated over eight well-known, and very different,
combinatorial optimization problems, static (exam
timetabling), dynamic (dynamic vehicle routing) and the six
domains of the hyper-heuristic competition (CHeSC) test suite
(boolean satisfiability (MAX-SAT), one dimensional bin
packing, permutation flow shop, personnel scheduling,
traveling salesman and vehicle routing with time windows
problems). Compared with various well-known acceptance
criteria, state of the art of hyper-heuristics and other bespoke
methods, empirical results demonstrate that the proposed
framework is able to generalize well across all domains. We
obtain competitive, if not better results, when compared to the
best known results obtained from other methods that have
been presented in the scientific literature.

Index Terms—Gene Expression Programming, Hyper-

heuristic, Timetabling, Vehicle Routing, Dynamic
Optimization

Nasser R. Sabar and Masri Ayob are with Data Mining and Optimization
Research Group (DMO), Centre for Artificial Intelligent (CAIT),
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
email:naserdolayme@yahoo.com, masri@ftsm.ukm.my
Graham Kendall and Rong Qu are with the ASAP Research Group, School
of Computer Science, The University of Nottingham, Nottingham NG8
1BB,UK.email:Graham.Kendall@nottingham.edu.uk,

Rong.Qu@nottingham.edu.uk.
Graham Kendall is also affiliated with the University of Nottingham
Malaysia Campus, 43500 Semenyih, Selangor, Malaysia. email:
Graham.Kendall@nottingham.edu.my

I. INTRODUCTION

Over the years, meta-heuristics research communities
acknowledged the fact that meta-heuristics configuration
(operators and parameter settings) plays a crucial role on
the algorithm performance [1], [2], [3]. Indeed, it has been
shown that different meta-heuristic configurations work
well for particular problem instances or only at particular
stages of the solving process [4],[5]. Hence, the
performance of any search method may be enhanced by
automatically adjusting their configuration during the
problem solving process in order to cope with different
problem domains and/or instances [2], [3]. Within this
context, automated heuristic design methods have emerged
as a new research trend [4]. The ultimate goal of these
methods is to automate algorithm design process as much
as possible in such a way that they can work well across a
diverse set of problem domains [1],[6]. Hyper-heuristics [4]
represent one of these methods. They are a search
methodology that is able to provide solutions to a wide
variety of problem domains, rather than being tailored for
each problem or problem instance encountered. Hyper-
heuristics operate on the heuristic search spaces, rather than
operating directly on the solution space, which is usually
the case with meta-heuristic algorithms [7]. The key
motivation behind hyper-heuristics is to raise the level of
generality, by drawing on the strengths, and recognizing the
weaknesses, of different heuristics and providing a
framework to exploit this. The most common hyper-
heuristic framework has two levels known as high level
strategy and low level heuristic. The high level strategy
manages which low level heuristic to call (heuristic
selection mechanism) and then decides whether to accept
the returned solution (the acceptance criterion). The low
level contains a set of problem specific heuristics which are
different for each problem domain.

Generally, the success of a hyper-heuristic framework is
usually due to the appropriate design of the high level
strategy (heuristic selection mechanism and an acceptance
criterion) and it is not surprising that much work in the
development of hyper-heuristics is focused on the high
level strategy [8]. The variety of landscape structures and
the difficulty of the problem domains, or even problem
instances, usually require an efficient heuristic selection

A Dynamic Multi-Armed Bandit-Gene Expression
Programming Hyper-Heuristic for Combinatorial

Optimization Problems

Nasser R. Sabar, Masri Ayob, Graham Kendall, Senior Member, IEEE and Rong Qu, Senior Member,
IEEE

mechanisms and acceptance criteria to achieve good
performance [4]. Both components (heuristic selection
mechanism and acceptance criterion) are crucial and many
works have shown that different combinations and
configurations usually yield different performance [7], [8],
[9].

Therefore, in this work we address these challenges by
proposing a new high level strategy for the hyper-heuristic
framework with the following two components (see Fig. 1):

i) Heuristic selection mechanism: the proposed

framework utilizes the dynamic multi-armed bandit-
extreme value based rewards [10] as an on-line heuristic
selection mechanism. The attractive feature of a
dynamic multi-armed bandit is the integration of the
Page-Hinkly statistical test to determine the most
appropriate heuristic for the next iteration by detecting
the changes in average rewards for the current best
heuristics. In addition, the extreme value-based rewards
credit assignment mechanism records the historical
information of each heuristic to be used during the
heuristic selection process.

ii) Acceptance criterion: instead of using an acceptance
criterion manually designed by human experts (which
usually requires ongoing tuning), we propose a simple
framework to automatically generate, during the solving
process, different acceptance criteria for different
instances or problem domains as well as to consider the
current problem state by using gene expression
programming [11]. We choose gene expression
programming to automatically generate the acceptance
criteria for the hyper-heuristic framework due to its
ability to always generate solutions that are syntactically
correct and to avoid the problem of code bloat.

Fig. 1. The proposed gene expression programming based hyper-heuristic

(GEP-HH) framework.

In the literature, automatic program generation methods,
such as genetic programming (GP), have been successfully
utilized as hyper-heuristic to generate heuristics for
optimization problems such as 2D packing and MAX-SAT
problems [7]. However, despite the success of GP based
hyper-heuristics, the same hyper-heuristic cannot be used to
generate heuristics to other domains such as exam

timetabling or vehicle routing problems. This is because
existing GP based hyper-heuristics are used to generate a
specific heuristics for one domain only. Hence, the function
and terminal sets that have been defined for one domain
cannot be used to solve other domains. In other words, to
solve a new problem domain we have to define a
fundamentally different set of functions and terminals that
can suit to the problem in hand. Based on this current level
of generality, in this work, we propose a simple automatic
program generation framework to automatically generate
the high level strategy competent of the hyper-heuristic
framework. The novelty of the proposed framework is it
used at the higher level of abstraction and can tackles many
optimization problems using the same set of functions and
terminals. This feature distinguish our framework from
existing GP based hyper-heuristics as they generate
heuristics using a specific set of functions and terminals
that are tailored to a given problem. In practice, evolving or
optimizing algorithm components will not only alleviate
user intervention in finding the most effective
configuration, but can also facilitate algorithm
configurations. In addition, besides the fact that manual
configuration may only represent a small fraction from the
available space, usually it needs a considerable amount of
expertise and experience. Hence, exploring the search space
using searching methods (i.e. GEP in this work) might yield
a better performance compared to manual configuration.
Our objectives are:

- To propose an on-line hyper-heuristic framework that

can adapt itself to the current problem state using a
heuristic selection mechanism which integrates a
statistical test to selecting the appropriate low level
heuristics.

- To propose a simple on-line framework to automatically
generate, for each instance, an acceptance criterion that
uses the current problem state, and that is able to cope
with changes that might occur during the search process.
This will be achieved using a gene expression
programming algorithm.

- To test the generality and consistency of the proposed
hyper-heuristic framework on eight different problem
domains (static and dynamic) and compare its
performance against well-known acceptance criteria, the
state of the art of hyper-heuristics and the best known
bespoke methods in the scientific literature.

Eight well-known combinatorial optimization problems, but
with very different search space characteristics, are used as
our benchmarks. Two of these problems are: the exam
timetabling problem (ITC 2007 instances [12]) and the
dynamic vehicle routing problem (Kilby instances [13]).
Other six problem domains have been used in the first
cross-domain heuristic search (CHeSC 2011) hyper-
heuristic competition [14]. These are: boolean satisfiability
(MAX-SAT), one dimensional bin packing, permutation
flow shop, personnel scheduling, traveling salesman and
vehicle routing with time windows problems. To the best of

our knowledge, this is the first work in the hyper-heuristic
literature which has considered both dynamic and static
problems. We would like to stress that, our intention is not
to present a hyper-heuristic framework that can outperform
all the existing bespoke methods, which are largely adapted
for a specific problem or problem instance, but rather to
demonstrate that the proposed hyper-heuristic framework
can perform well across different, static and dynamic,
problem domains, and which can exploit information of the
current problem state. However, our results demonstrate
that the proposed hyper-heuristic framework obtains
competitive results (if not better for some instances), across
all domains.

II. HYPER-HEURISTICS AND RELATED WORKS

Burke et al. [4] defined hyper-heuristic as “an automated
methodology for selecting or generating heuristics to solve
hard computational search problems”. Hyper-heuristics
have been widely used, with much success, to solve various
classes of problems. A traditional hyper-heuristic
framework has two levels, a high and a low level.

The high level strategies, which are problem independent
and have no knowledge of the domain, controls the
selection or generation of heuristics to be called (without
knowing what specific function it performs) at each
decision point in the search process. In contrast to meta-
heuristics, hyper-heuristics search the space of heuristics
instead of directly searching the solution space. Thus, since
exploring the heuristic space can be seen as a search
problem and finding optimal solutions is usually
impractical, there is still ongoing research interested in
developing new frameworks [15] that can address the
overall challenge of identifying the correct sequence to call
the low level heuristics. The low level heuristics represent a
set of problem dependent heuristics which operate directly
on the solution space.

 Generally, the high level abstraction of the hyper-
heuristic framework means that it can be applied to multiple
problem domains with little (or no) extra development
effort. Recently, Burke et al. [4] classified hyper-heuristic
frameworks based on the nature of the heuristic search
spaces and the source of feedback during learning. The
source of feedback can either be on-line, if the hyper-
heuristic framework uses the feedback obtained during the
problem solving procedure, or off-line, if the hyper-
heuristic framework uses information gathered during a
training phase in order to be used when solving unseen
instances. The nature of the heuristic search spaces is also
classified into two subclasses known as heuristics to choose
heuristics and heuristics to generate heuristics. The
classification specifies whether heuristics (either chosen or
generated) are constructive or pertubative. Please note that
our proposed hyper-heuristic can be classified as an on-line
perturbative heuristic to choose heuristics framework.

A. Heuristic to choose heuristics

Most of hyper-heuristic frameworks published so far have
been heuristics to choose heuristics [4]. For a given
problem instance, the role of the hyper-heuristic framework

is to intelligently choose a low level heuristic from the low
level set, so as to apply it at that decision point. The idea is
to combine the strengths of several heuristics into one
framework.

Meta-heuristics and machine learning methodologies
have been used as heuristic selection mechanisms, for
example tabu search with reinforcement learning [16].
Many different acceptance criteria have also been used,
including all moves [17], only improvements [17],
improving and equal [17], monte carlo [18], record to
record travel [19], simulated annealing [20], [21], late
acceptance [22], great deluge [23] and tabu search [24].
More details are available in [7].

Recently, the cross-domain heuristic search (CHeSC)
competition was introduced, which provides a common
software interface for investigating different (high level)
hyper-heuristics and provides access to six problem
domains where the low level heuristics are provided as part
of the supplied framework [14]. The algorithm designer
only needs to provide the higher level component (heuristic
selection and acceptance criterion). Further details about the
competition, including further results, are available in [14].

A possible drawback of the current high level strategies
is that they use one criterion in evaluating the performance
of each low level heuristic (previous performance) [7]. In
addition, although in the scientific literature there are
several variants of acceptance criteria mechanisms with
different ways to escape from local optima (e.g. simulated
annealing, tabu search and great deluge), most of them have
one or more sensitive parameters that need to be carefully
tuned [7]. Therefore, in this work, we propose a new high
level strategy that uses dynamic multi-armed bandit-
extreme value based rewards to select the appropriate low
level heuristic based on the current problem state and gene
expression programming framework to generate for each
instance different acceptance criterion.

B. Heuristic to generate heuristics

Heuristics that generate heuristics focus on designing new
heuristics by combining existing heuristic components and
then applying them to the current solution. Generative
genetic programming hyper-heuristics have been utilized to
solve many combinatorial optimization problems including
SAT [25], timetabling [26], vehicle routing [26] and bin
packing [27]. A recent review on hyper-heuristic is
available in [7] which provides more details about this area.

Although promising results have been achieved, GP has
been utilized as an off-line heuristic/rule builder using a
specific set of functions and terminals. Besides being
computationally expensive due to the need of training and
testing, they do not guarantee to deliver the same
performance across different domains or even different
instances of the same domain. This is because the generated
heuristics/rules are suited to only the instance that has been
used in the training phase. It is also impractical to manually
design a new set of functions and terminals for each new
problem and/or instance. This is because in most of real
world applications only few data are available and
randomly generated data that have been used during the
training process may not reflect the real situation or

different domains and/or instances. Furthermore, they are
tailored to solve specific problems and were only applied to
a single (static) domain, which raises the question of: to
what extent they will generalize to other domains?

The success of the above work, which has some
resemblance to the proposed gene expression programming,
is the main motivation for proposing an on-line gene
expression programming framework to generate the
acceptance criteria for the hyper-heuristic framework. The
benefit of this framework is the ability to generate different
acceptance criteria for different instances based on the
problem state and thus enabling it to cope with changes that
might occur during the solving process.

III. THE PROPOSED FRAMEWORK

We start by describing the proposed perturbative based
hyper-heuristic framework, followed by the components of
the high level strategy, i.e. the heuristic selection and
acceptance criterion mechanisms. Finally, we explain the
low level heuristics that will be used in our framework.

A. A Perturbative based Hyper-heuristic Framework

Our on-line perturbative based hyper-heuristic framework
comprises of high level strategy and low level heuristics.
The high level strategy consists of two components,
heuristic selection and acceptance criterion. The goal of the
high level strategy is to select a low level heuristic to be
applied at a given time. The low level contains a set of
perturbative heuristics that are applied to the problem
instance, when called by the high level strategy. Therefore,
based on the utilized low level heuristics, the proposed
hyper-heuristic framework is an improvement based
method as the hyper-heuristic starts with an initial solution
and iteratively improves it using a set of perturbative low
level heuristics.

The proposed hyper-heuristic iteratively explores the
neighborhood of the incumbent solution, seeking for
improvement. Given a set of low level heuristics (LLHs), a
complete initial solution, S, (generated either randomly or
via a constructive heuristic) and the objective function, F,
the aim of the hyper-heuristic framework is to select an
appropriate low level heuristic and apply it to the current
solution (S'=LLH(S)). Next, the objective function is called
to evaluate the quality of the resultant solution (F(S')),
followed by the acceptance criterion which decides whether
to accept or reject S'. If the S' is accepted, it will replace S.
Otherwise, S' will be rejected. The hyper-heuristic will
update the algorithmic parameters and another iteration will
start. This process is repeated for a certain number of
iterations. In what follows we discuss the components of
the proposed high level strategy.

B. High level strategy

In this work, we propose a new high level strategy, as
shown in Fig. 2. It has two components: heuristic selection
mechanism (dynamic multi-armed bandit-extreme value-
based rewards) and an acceptance criterion (gene
expression programming).

Fig. 2. The high level strategy within the proposed GEP-HH framework

1) The heuristic selection mechanism

The heuristic selection mechanism successively invokes
two tasks, credit assignment (extreme value-based rewards
[10]) and heuristic selector (dynamic multi-armed bandit
mechanism [10]). Credit assignment mechanism maintains
a value (reward) for each low level heuristic. Heuristic
selector mechanism utilize the rewards assigned by the
credit assignment mechanism to each low level heuristic to
decide which low level heuristic will be applied at current
decision point.

a) The credit assignment mechanism: Extreme value-
based rewards

The credit assignment mechanism maintains a value
(reward) for each low level heuristic (LLH), indicating how
well it has performed recently. The LLH will be rewarded
during the search process if it finds a better solution or the
solution is accepted by the employed acceptance criterion.
In this work, the extreme value-based reward [10] is
employed as the credit assignment mechanism. Low level
heuristics, which are called infrequently, but lead to large
improvements in solution quality, are preferred over those
that only lead to small improvements, over a longer time
frame. Low level heuristics which bring frequent, small
improvements will be rewarded less and consequently have
less chance of being selected [10].

The extreme value-based reward mechanism works as
follows. When a low level heuristic is selected, its
improvement to the current solution is computed. In this
work, the improvement (PILLH) of the applied low level
heuristic to a current solution is calculated as follows:
Assume f1 is the quality of the current solution and f2 is the
quality of the resultant solution after applying the low level
heuristic (LLH), PILLH = (f1-f2 /f1) * 100. The PILLH is then
saved for that low level heuristic, at the corresponding
iteration for a sliding time window of size W, using First in,
First Out (FIFO), i.e. improvements of the selected low
level heuristic in the last W iterations are saved. The credit
of any low level heuristic (r) is then set as the maximum
value in its corresponding sliding window as follows:

(1)

,1...max {()}ii W LLHr PI

where W is the size of the sliding window. The size of the
sliding window, W, controls the size of the gathered
information. Based on our preliminary testing (see Section
IV.A), it was found that when W=20 the hyper-heuristic
performs well. We have thus fixed W=20 in all our
experiments.

b) Heuristic selector: Dynamic multi-armed bandit
mechanism

Based on their previous performance (assigned credit value
by the credit assignment mechanism) and the number of
times that the low level heuristics have been applied, the
heuristic selection mechanism selects low level heuristics to
be applied at the given solution. In this work, we use the
dynamic multi-armed bandit (DMAB) mechanism as an on-
line heuristic selector mechanism [10]. The attractive
feature of DMAB is the integration of the Page-Hinkly
(PH) statistical test to detect the changes in average rewards
of the current best low level heuristic. DMAB is based on
upper confidence bound strategy which deterministically
selects a low level heuristic with maximum accumulative
rewards. A low level heuristic is selected based it is
empirical rewards and the number of times it has been
applied up to current time step.

Formally, let k denote the number of available low level
heuristics, each one having some unknown probability.
DMAB selects the best low level heuristic that maximizes
the accumulative rewards over time. In essence, each low
level heuristic is associated with its empirical rewards qi,t
(2) (the average rewards ri obtained by the i-th low level
heuristic up to time t) and a confidence level ni,t (the
number of times that the i-th low level heuristic has been
applied up to time t).

, 1 , ,
, 1

,

() *i t i t i t
i t

i t

n q r
q

n




   
 

 (2)

where ri,t is the credit value (based on the credit assignment
mechanism) of the i-th low level heuristic up to time t. At
each decision point, the low level heuristic with the best
confidence interval (maximum accumulative rewards) is
selected to be applied to the current solution using (3).

,1
1 ... ,

,

2 log
m ax

k

j tj
i k i t

i t

n
select q c

n




 
   
 

 (3)

where c is a scaling factor which controls the trade-off
between the low level heuristic that has the best reward (the
left term of equation (3)) and the one that has been
infrequently applied (the right term of equation (3)).

DMAB uses the Page-Hinkly (PH) statistical test to
detect the changes in average rewards of the current best
low level heuristics. If the current best low level heuristic is
no longer the best one (i.e., changed detected), DMAB is
restarted from scratch. The underlying idea is to quickly
and dynamically identify new best low level heuristics,
avoiding irrelevant information. Let αt represent the average
reward of a low level heuristic over the last t time step, r
represents the rewards of the i-th low level heuristic at time

j, the PH test [10] uses equation (4) to detect the changes in
average rewards.

 (4)

where et is the difference between the current reward (rt)
and the average reward (αt) of the i-th low level heuristic
plus a tolerance parameter δ which is fixed to 0.15 (see
Section A. GEP-HH Parameter Settings). mt is a variable
that accumulates the differences et up to step t. PH
recognizes that the change in the reward is detected when
the difference (

1...max {| |} | |j t i tm m ) is greater than a pre-

defined threshold γ (
1...m ax { | |} | |j t j tm m   ).

2) The acceptance criterion mechanism

The role of the acceptance criterion is to decide whether to
accept or reject the solution that is generated once the
selected low level heuristic has been applied [5, 8].
Accepting only improving solutions may lead the search
into early stagnation. Accepting worse solutions may help
the algorithm to escape from local optima, but may generate
low quality solutions because the search never fully
explores promising regions. A good acceptance criterion
mechanism should be able to strike a balance between the
two [5].

In this work, we propose a gene expression programming
framework to evolve the acceptance criterion for our hyper-
heuristic. It is implemented as an on-line acceptance
criterion generation method that takes the quality of the
previous solution, current solution and current state of the
search process as input and returns the decision as to
whether to accept or reject the solution. This removes the
need for manual customization. It also contributes to the
literature on the automatic generation of heuristic
components that are able to avoid being trapped in confined
areas of the search space and are able to work well across
different problem domains/instances. In the following
subsections, we presents the basic gene expression
programming algorithm followed by the proposed
framework to generate the acceptance criteria of the
proposed high level strategy of the hyper-heuristic.

a) Basic gene expression programming algorithm

Gene expression programming (GEP) [11] is a form of
genetic programming (GP) that uses the advantage of both
genetic algorithms (GA) and genetic programming (GP) in
evolving a population of computer programs. The attractive
features of GEP, compared to GP, are its ability to always
generate syntactically correct programs and avoid the
problem of code bloat (a recognized problem in traditional
GP) [11]. GEP uses a linear representation of a fixed size of
strings called genomes (or chromosomes) which are
translated into a parse tree of various sizes in a breadth-first
search form. The parse tree is then executed to generate a
program that will be used to solve the given problem.
Instead of applying operators directly to the trees, as in
genetic programming, GEP applies genetic operators

1 1

1
, (),

t t

t j t t t t jj j
r e r m e

t
  

 
     

(crossover, mutation, inversion and transposition) directly
to the linear encoding.

The genomes in GEP represent a set of symbol strings
called genes. Each one consists of two parts called head
which contains both terminal and function symbols and tail
which only contains terminal symbols [11]. Usually, the
head length h is set by the user, whilst, the tail length tl is
calculated by the formula tl = h*(n-1) +1, where n
represents the maximum number of arguments of the
functions.

Consider a chromosome comprising of a set of symbols
of function F = {*, /, +, -} and terminals T = {a, b}. In this
example, n=2 because the maximum arity of the function is
two arguments. If we set the head length h=10, then the tail
length tl=11 and the chromosome length will be
h+tl=10+11=21. Assume the solution (chromosome) is
randomly generated, one possible example is as follows
[11]: GEP_gene=+*ab-ab+aab+ababbbababb and its
corresponding expression tree is: GEP_expression=
a+b*((a+b)-a).

There are five components in GEP, namely the function
set (F), terminal set (T), fitness function, GEP parameters
and stopping condition [11]. To evaluate the fitness of
individuals, chromosomes are firstly translated into
expression trees following the breadth-first form as follows
[11]:

- Scan the chromosome string one by one from left to

right.
- The first element represents the node of the

corresponding tree and other strings are written in a left
to right manner on each lower level.

- If the scanned element is a function (F) with n (n>=1)
arguments, then the next n elements are attached below
it as its n children. If the scanned element is a terminal
(T), then it will form a leaf of the corresponding tree.

This process is repeated until all leaves in the tree are from
the terminal set (T) only. Next, the corresponding programs
are executed on the user-defined problem, and their fitness
values are calculated.

Algorithm 1 presents the pseudocode of GEP. As in
standard GA, GEP starts with a population of solutions
(randomly generated). Each individual (chromosome) in the
population employs the head-tail encoding method which
ensures the validity of the generated solution. All
chromosomes are then translated into expression trees, and
executed to obtain their fitness values. Based on their
fitness values, some individuals are selected by the
selection mechanism (e.g. roulette wheel selection) to form
the new generation by using the following genetic operators
[11]:

- Crossover: exchanges elements between two randomly

selected genes from the chosen parents. Both one-point
and two-point crossover operators can be used. In this
work, a one-point crossover operator is employed. In
one-point crossover, first randomly select a point in both
parents and then swapped all data beyond the selected
points between the parents.

- Mutation: occurs at any position in the generated
chromosome as long as it respects the gene rules such
that the elements in the head part can be changed into
both terminal and function, whilst, the elements in the
tail part can be changed into terminals only. In this
work, we use a point mutation operator. This mutation
operator scans chromosome genes one by one and,
based on the mutation probability, change the value of
current gene in such a way that if the current gene is in
the head part it can be changed into both terminal and
function, whilst, if it is in the tail part it can be changed
into terminals only.

- Inversion: reverses the sequence of elements within the
head or tail. Based on the inversion probability rate,
randomly select a point in either head or the tail of a
given chromosome and reverses the sequence beyond
the selected point.

The newly generated chromosomes are then evaluated to
calculate their fitness values, and added into the next
generation. Following roulette wheel (or other) selection the
fittest individuals are always copied into the next generation
(i.e. elitism is employed). This process is executed until a
stopping condition is satisfied.

Algorithm 1: Pseudocode of GEP algorithm
Set number of generations, populationsize, Headlength, Taillength, pcrossover,
 pmuataion, Inversionsize
population← initializepopulation(populationsize, Headlength, Taillength)
foreach soli population do
 // translate the chromosome into expression tree//
 soli-et ←TranslateBreadthFirst(Soli-genes)
 // execute the corresponding expression tree//

 soli-cost ←execute (soli-et)
end
solbest ←SelectBestSolution(populationsize)

while stopping condition not true do
 // parent selection process //

 parenti← SelectParents(populationsize)
 parentj← SelectParents(populationsize)
 // crossover operator //

 child1←Crossover(parenti, parentj,pcrossover)
 child2←Crossover(parenti, parentj, pcrossover)
 // mutation operator //

 child1m← Mutation(child1, pmuataion)
 child2m←Mutation(child2, pmuataion)
 // inversion operator //

 child1-inversion←Inversion(child1m, Inversionsize)
 child2-inversion ← Inversion(child2m, Inversionsize)
 // translated the chromosome into expression tree//

 child1-et ← TranslateBreadthFirst(child1-inversion)
 child2-et ← TranslateBreadthFirst(child2-inversion)
 // execute the corresponding expression tree//
 child1 -cost ←execute(child1-et)
 child2 -cost ←execute(child2-et)
 //update the population //

 population ← populationUpdateRWS (child1-cost, child2-cost)
end
return the best solution

b) Gene expression programming algorithm for
evolving acceptance criterion

In this work, we propose a GEP framework to automatically
generate the acceptance criterion which is specific to a
given problem instance within the hyper-heuristic
framework. A key decision in the design of the proposed
GEP framework is the definition of the terminal set (T),
function set (F) and the fitness function.

In order to be able to use the proposed GEP framework
across a variety of problems, we keep the definition of the
terminal set (T), function set (F) and the fitness function as
general, and simple, as possible. This ensures that the
proposed framework can be used to solve different classes
of problems rather than just those considered in this work,
and can be easily integrated into other meta-heuristic
algorithms. The function (F) and terminal (T) sets that have
been used in the proposed GEP framework are presented in
Table 1.

TABLE 1 THE TERMINAL AND FUNCTION OF GEP-HH
Terminals set

terminal description
delta The change in the solution quality
PF The quality of the previous solution
CF The quality of the current solution
CI Current iteration
TI Total number of iterations

Function set
function description

+ Add two inputs
- Subtract the second input from the first one
* Multiply two inputs
ex The result of the child node is raised to its

power (Euler’s number)
% Protected divide function, i.e., change the

division by zero into 0.001

The main role of GEP is to evolve a population of
individuals, each encoding an acceptance criterion. To
assess the performance of an acceptance criterion, the
hyper-heuristic framework is run on the given problem
instance with the evolved acceptance criterion. Specifically,
the proposed hyper-heuristic invokes the following steps: it
calls the heuristic selection mechanism to select a low level
heuristic, which is applied to the current solution, and
calculates the quality of the generated solution. If the
generated solution is better than the current one, the current
one is replaced (accepted). If not, the hyper-heuristic will
call the acceptance criterion that is generated by the GEP
framework and execute the corresponding program. Then,
the generated solution is accepted if the exponential value
of the utilized acceptance criterion returns a value less or
equal to 0.5 (the exp function returns values between 0 and
1). Otherwise, the solution will be rejected (if the
exponential value of the utilized acceptance criterion is
greater than 0.5). In the literature, a value of 0.5 was
suggested [27] but for different domains. In our work, the
evolved programs in our hyper-heuristic framework are
utilized as an acceptance criterion rather than as a
constructive heuristic as in [27]. The value 0.5 was also
determined based on preliminary testing. The proposed
hyper-heuristic framework will keep using the utilized
acceptance criterion, which is generated by GEP
framework, for a pre-defined number of iterations (it stops
after 10 consecutive non improvement iterations,
determined by preliminary experimentation, see IV.A).

When the stopping condition is satisfied, the performance
of the utilized acceptance criterion is assessed by
calculating its fitness function. The fitness function (FF),
which is problem independent, is used to assess the
performance of the current acceptance criterion.

In this work, we adapt the idea that was used to control the
population size in an evolutionary algorithm [28] to
evaluate the fitness of the current acceptance criterion. The
probability of each acceptance criterion is updated with
respect to the quality of the best solution returned after the
stopping condition is satisfied.

Let Ac[] be the array of the fitness value of selecting the
acceptance criterion, fi and fb represents the quality of the
initial and returned solutions, NoAc represents the number
of acceptance criteria, or the population size of GEP,
respectively. Then, if the application of the i-th acceptance
criterion leads to an improvement in the solution quality,
the fitness of the i-th acceptance criterion is updated as
follows: Ac[i]=Ac[i]+∆ where ∆=(fi - fb)/ (fi + fb),  j
{1,…,NoAc} and j≠i, Ac[j]=Ac[j]-(∆/(NoAc-1)). Otherwise
(if the solution cannot be improved), Ac[i]=Ac[i]-|(∆*α)|
where α=Current_Iteration/Total_Iteration,  j
{1,…,NoAc} and j≠i, Ac[j]=Ac[j]+(|∆|*α/(NoAc-1)). We
decrease the fitness value of the other acceptance criteria
(individuals) in order to decrease their chances of being
selected. Initially, the fitness of each acceptance criterion is
calculated by executing their corresponding program.

C. Low level heuristics

The low level of the proposed hyper-heuristic framework
contains a pool of problem-specific heuristics. The aim of
the low level heuristics is to explore the neighborhoods of
the current solution by altering the current solution
(perturbation). In this work, we have employed a variety of
low level heuristics, all drawn from the scientific literature
which have tackled these problems. Details of these
heuristics are presented in the problem description sections
(Sections IV-B-1-a and IV-B-2-a).

IV. EXPERIMENTAL SETUP

In this section, we discuss the parameter settings of GEP-
HH and briefly describe the considered combinatorial
optimization problems that we used to evaluate GEP-HH.
Please note that, to save space, some tables and figures are
presented in a supplementary file.

A. GEP-HH Parameter Settings

Finding the best parameter values is a tedious, and time
consuming task that often requires considerable expertise
and experience [29], [30]. In this work, the Relevance
Estimation and Value Calibration (REVAC) [29] is used.
REVAC is a tool for parameter optimization that takes all
parameters and their possible values, and suggests the
appropriate value for each parameter. REVAC is utilized to
find the generic values that can be used for all problem
domains, instead of tuning the algorithm to each domain
independently. In this work, we have used REVAC instead
of other methods due to its ability to return an interval of
values for each parameter rather than the best configuration
[31]. By using the average value of each parameter, we can
avoid over generalization to specific domain. Therefore, we
tuned GEP-HH for each domain separately and then used
the average of the minimum value for each parameter.
Taking into consideration the solution quality as well as the

computational time needed to achieve good quality
solutions, the running time for each instance is fixed to 20
seconds and the number of iterations performed by REVAC
is fixed at 100 iterations (see [29] for more details). Table 2
lists the parameter settings of GEP-HH that have been used
across all problem domains.

TABLE 2 GEP-HH PARAMETERS

Parameters
Possible
Range

Suggested Value by
REVAC

1 Population size 5-50 10
2 Number of generations 10-200 100
3 Crossover probability 0.1-0.9 0.7
4 Mutation probability 0.1-0.9 0.1
5 Inversion rate 0.1-0.9 0.1
6 Head length h 2-40 5
7 Selection mechanism

-
Roulette Wheel
Sampling with

Elitism
8 Crossover type Two/multi/

one point
One point

9 No. of consecutive non
improvement

0-100 10

10 γ in the PH test 1-50 14
11 The scaling factor C 1-100 7
12 The sliding window size W 2-100 20
13 The tolerance parameter δ 0.1-1.00 0.15

B. Problem Descriptions

Eight well-known combinatorial optimization problems
have been chosen as the test domains in this work. These
are: exam timetabling, dynamic vehicle routing and the six
problem domains of the first cross-domain heuristic search
competition (CHeSC) [14]. Please note that all the
considered problems are minimization problems and the
values in the table represents the solution quality (the lower
the better).

1) Application I: Exam Timetabling
The exam timetabling problem involves allocating a set of
exams into a limited number of timeslots and rooms [32].
The allocation process is subject to a set of hard and soft
constraints. The aim of the optimization process is to
minimize soft constraint violations as much as possible and
satisfy the hard constraints [32]. The quality of a timetable
is measured by how many soft constraints, possibly
weighted, are violated. In this work, we test GEP-HH on
the recently introduced exam timetabling instances from the
2007 International Timetabling Competition (ITC 2007)
[12]. Tables 3 and 4 (see the supplementary file) present the
hard and soft constraints, and Table 5 (see the
supplementary file) shows the main characteristics of these
instances. The proximity cost [12], which represents the
soft constraint violations, is used to calculate the penalty
cost (objective function value) of the generated solution.

a) Exam Timetabling: Initial solution and the low
level heuristics

As mentioned in Section III-A, GEP-HH starts with a
complete initial solution and iteratively improves it. The
initial solution is generated by hybridizing three graph
coloring heuristics proposed in [33].

The set of low level heuristics, which are commonly used in
the scientific literature [32], are as follows:

Nbe1: Select one exam at random and move it to any feasible

timeslot/room.
Nbe2: Select two exams at random and swap their timeslots (if

feasible).
Nbe3: Select two timeslots at random and swap all their exams.
Nbe4: Select three exams at random and exchange their timeslots

randomly (if feasible).
Nbe5: Move the exam leading to the highest soft constraint violation to

any feasible timeslot.
Nbe6: Select two exams at random and move them to any feasible

timeslots.
Nbe7: Select one exam at random, then randomly select another

timeslot and apply the Kempe chain neighborhood operator.
Nbe8: Select one exam at random and move it to a randomly selected

room (if feasible).
Nbe9: Select two exams at random and swap their rooms (if feasible).

2) Application II: Dynamic Vehicle Routing Problems

The dynamic vehicle routing problem (DVRP) [13] is a
variant of the classical, and static, VRP [34], where the aim
in both versions is to minimize the cost of routes to serve a
set of customers. In contrast to the static VRP, where the
problem information is known in advance, in DVRP not all
information is known at the start, and changes might occur
at any time. DVRP can be modeled as a VRP with the
difference that new orders from customers might appear
during the optimization process.

The goal is to find a feasible set of routes that do not
violate any hard constraints and minimize the travel
distance as far as possible. The hard constraints that must
be satisfied are [34]: i) each vehicle starts, and terminates
its route at the depot, ii) the total demand of each route does
not exceed the vehicle capacity, iii) each customer is visited
exactly once by exactly one vehicle, and iv) the duration of
each route does not exceed a global upper bound. The
quality of the generated solution is represented as the total
traveling distance (see [34] for more details).

In DVRP, the problem information can be changed over
time [13], [35], i.e. new orders are revealed over time. Such
changes need to be included in the current schedule as
follows: when new orders appear, they should be integrated
into a current route or a new route is created for them. As a
result, some customers in the current solution may be
rescheduled in order to accommodate these changes. The 21
DVRP instances that were originally introduced in [13] and
further refined in [35] are used as the benchmark to assess
whether the proposed hyper-heuristic framework can
perform well on dynamic problems (see Table 6 in the
supplementary file).

In this work, we have used the same model presented in
[36], [35], [37]. In this model, the DVRP is decomposed
into a (partial) sequence of static VRPs and then they are
successively solved by the proposed GEP-HH. The model
parameters are presented in Table 7 (see the supplementary
file), which is the same as in [36].

a) DVRP: Initial solution and the low level heuristics

The initial feasible solution is constructed by generating a
random permutation of orders which missed the service
from the previous working day [37].
The low level heuristics that we employ in GEP-HH for the
DVRP instances are the most common ones used to solve
the capacitated vehicle routing problems in the literature
[34]. They are described as follows:

Nbv1: Select one customer randomly and move it to any feasible

route.
Nbv2: Select two customers at random and swap their routes.
Nbv3: Select one route at random and reverse a part of a tour

between two selected customers.
Nbv4: Select and exchange routes of three customers at random.
Nbv5: Select one route at random and perform the 2-opt procedure.
Nbv6: Perform the 2-opt procedure on all routes.
Nbv7: Select two distinct routes at random and swap a portion of the

first route with the first portion of the second route.
Nbv8: Select two distinct routes at random and from each route select

one customer. Swap the adjacent customer of the selected one
for both routes.

Nbv9: Select two distinct routes at random and swap the first portion
with the last portion.

Nbv10 Select one customer at random and move it to another position
in the same route.

The search space of GEP-HH is limited to the feasible
region only.

3) Application III: HyFlex problem domains

In addition, the generality of GEP-HH is also verified using
HyFlex software that has been used in the CHeSC
competition [14]. HyFlex provides access to six problem
domains with very different characteristics and real world
application. These are: boolean satisfiability (SAT), one
dimensional bin packing (BP), permutation flow shop (FS),
personnel scheduling (PS), traveling salesman (TSP) and
vehicle routing (VRP) [14].

For each problem domains, the problem dependent
components such as the objective function, problem
instances and the initial solution generation method are
provided in HyFlex. Each problem domain contains 5
instances and the total number of tested instances is 30.
HyFlex also provides, for each problem, a set of different
perturbative low level heuristics. The set of perturbative
low level heuristics are classified into four types as follows:

1. Mutational or perturbation heuristics: generate a new
solution by modifying the current solution by
changing, removing, swapping, adding or deleting
one solution component. Mutation intensity is
controlled by α, 0<= α <=1.

2. Ruin-recreate (destruction-construction) heuristics:
destroy a part of the current solution and recreate it
in a different way to generate a new solution. The
difference between ruin-recreate and mutational
heuristics is that the ruin-recreate can be seen as
large neighborhood structures and they use problem
specific construction heuristics to recreate the
solutions.

3. Hill-climbing heuristics: iteratively perturb the
current solution, only accept improving solutions,
until a local optimum is found or a stopping
condition is satisfied. The difference between hill-
climbing and mutational heuristics is that hill-
climbing is an iterative improvement process,
accepting only improving solutions. The depth of
search is controlled by β, 0<= β <=1.

4. Crossover heuristics: take two solutions and produce
a new one by combining them.

More details about HyFlex problem domains can be found
in [14].

V. COMPUTATIONAL RESULTS AND DISCUSSIONS

This section is divided into three subsections. First section
is devoted to evaluate the effectiveness of GEP-HH
components. In second section, we compare the results of
GEP-HH with the state of the art of hyper-heuristic and
bespoke methods published in the scientific literature. The
third section discusses the performance of the GEP-HH
across all the considered problem domains.

In order to make the comparison as fair as possible, for all
experimental tests, the execution time is fixed, with the
stopping condition, determined as follows:

 For exam timetabling [12] and HyFlex problem domains

[14] the execution time is determined by using the
benchmark software provided by the organizers to ensure
fair comparisons between researchers using different
platforms. We have used this software to determine the
allowed execution time using our computer resources (i.e.
10 minutes).

 For dynamic vehicle routing, the execution time is fixed
as in [36] and [37] (i.e. 750 seconds). We choose these
two references as they represent the most recent methods
applied to this problem and also the method in [36] is the
only hyper-heuristic that has been tested on DVRP.

To gain sufficient experimental data, for all experimental
tests, we executed GEP-HH and the tested hyper-heuristic
variants (implemented herein) for 51 independent runs with
different random seeds for exam timetabling and DVRP
problems and, 31 runs for the HyFlex domains (adhering to
the competition rules [14]).

A. Effectiveness evaluation of GEP-HH components

This section is divided into two subsections. First section is
devoted to evaluate the effectiveness of integrating the
statistical test and extreme value-based reward into the
selection mechanism. In second section, we investigate the
effectiveness of the generated acceptance criteria by GEP.
Accordingly, we have carried out two set of experiments as
follows: first one is devoted to assess the benefit of
integrating the statistical test and extreme value-based
reward within the heuristic selection mechanism. Second
experiment aims to evaluate the merits of the evolved
acceptance criteria by the GEP framework against the well-

known acceptance criteria (implemented herein) in the
scientific literature.

1) Q1: Does the integration of the statistical test and
extreme value-based reward into the heuristic selection
mechanism have a positive impact?

To answer this question, we removed statistical test and
extreme value-based reward from the heuristic selection
mechanism while keeping all the other part unchanged.
Thus, the outcome will be four variants of heuristic
selection mechanisms as follows:

 DM1: the dynamic multi-armed bandit but without the

Page-Hinkly statistical test and the extreme value-based
reward credit assignment.

 DM2: as above, but integrating the Page-Hinkly statistical
test.

 DM3: same as DM1, but use the extreme value-based
reward credit assignment mechanism.

 DM4: same as DM1, but use both the Page-Hinkly
statistical test as well as the extreme value-based reward
credit assignment mechanism.

In addition, we also compare the performance of DM1,
DM2 DM3 and DM4 with the following heuristic selection
mechanisms that have been widely used in the literature [7].
Our aim is to justify why we have selected the dynamic
multi-armed bandit-extreme value based rewards as an on-
line heuristic selection mechanism in this work instead of
others. The considered heuristic selection mechanisms are:

 R: a random selection mechanism, at each iteration,

randomly selects one low level heuristic.
 RW: a roulette wheel selection mechanism. Initially, all

low level heuristics have the same chance of being
selected. Then, the probability P of selecting the i-th low
level heuristic (LLH) is calculated as follows :

 (5)

where L is the number of low level heuristics. If the
applications of the i-th low level heuristic leads to an
improvement in the objective function, we reward the i-th
low level heuristic (6) and punish others (7). Otherwise,
we punish the i-th low level heuristic (8) and reward
others (9).

 (6)

 (7)

 (8)

 (9)

where fc is the quality of the current solution and fn is the
quality of the solution after applying the selected low
level heuristic.

 CFM: the choice function heuristic selection mechanism
(See [17] for more details).

In total, there are seventh variants of heuristic selection
mechanism (denoted as DM1, DM2 DM3, DM4, R, RW and
CFM) used in the experiment and are tested on the ITC
2007, DVRP and the HyFlex problem domains. To assure a
fair comparison between the compared heuristic selection
mechanisms (DM1, DM2 DM3, DM4, R, RW and CFM),
the initial solution, number of runs, stopping condition, low
level heuristics and computer resources are fixed for all
experiments. In addition, the acceptance criterion of
improving only (hill climbing) or equal is used with the
seventh heuristic selection variants. Thus, the compared
heuristic selection variants can be seen as several different
hyper-heuristic frameworks. The main different between
them is the employed heuristic selection mechanism only.

The results obtained by the seventh heuristic selection
variants (DM1, DM2 DM3, DM4, R, RW and CFM) for the
eight problems are summarized in Table 8. The reported
results are the average of the best, average (Ave) and
standard deviation (Std) over all instances of each domain.
All the considered problems are minimization problems and
the values in the table represents the solution quality (the
lower the better). From Table 8, one can clearly see that,
DM4 outperformed other variants in term of best, average
and standard deviation across the eight problem domains
(best results are shown in bold). The results in Table 8 also
reveal that the performance of other variants is different
from one domain to another. This implies that each one of
them is suited to one problem domains and/or some
instances only.

To further verify the effectiveness of the DM4, a
Wilcoxon statistical test (pairwise comparisons) with a
significance level of 0.05 is conducted. The p-value results
demonstrate that DM4 is the best overall (see Tables 9, 10
and 11 in the supplementary files). Indeed, DM4 is
statistically better than other heuristic selection mechanisms
(DM1, DM2 DM3, DM4, R, RW and CFM) on many
instances of the considered problem domains (ITC 2007,
DVRP and HyFlex problem domains).

TABLE 8 THE AVERAGE PERFORMANCE COMPARISON OF THE COMPARED HEURISTIC SELECTION VARIANTS FOR ALL PROBLEM
DOMAINS

Domain # Name DM1 DM2 DM3 DM4 R RW CFM

1-
Exam

Timetabling

Best 17140.63 13268.5 12736.5 8859.25 19377 16098 10368.75
Ave. 19220.7 14273.05 13864.19 9637.929 22053.28 17375.82 11947.16
Std. 1843.299 1013.084 992.5938 765.4538 2391.124 1199.213 888.9075

),...,1(,)(

1

Li
LLH

LLH
iP

L

i i

i 
 

(() / ()i i c n c nL L H L L H f f f f   

(() / () / (1))

, , {1... }

j j c n c nLLH LLH f f f f L

j i j i L

    

  

(() / ()i i c n c nL L H L L H f f f f   

(() / () / (1))

, , {1... }

j j c n c nLLH LLH f f f f L

j i j i L

    

  

2- DVRP
Best 2410.843 2382.941 2348.92 2298.141 2491.384 2391.425 2319.31
Ave. 2579.486 2465.254 2519.222 2450.872 2743.53 2522.282 2478.058
Std. 164.1548 133.6557 135.1805 123.0943 234.3795 139.189 125.2348

3- MAX-SAT
Best 6.6 3.6 5.8 2.6 4.2 3.8 5.8
Ave. 22.912 15.78 19.178 13.026 15.762 14.29 14.314
Std. 10.8 7.774 8.118 6.542 7.968 7.26 7.368

4- Bin Packing
Best 0.0531 0.03432 0.03612 0.03334 0.04704 0.03928 0.03584
Ave. 0.07262 0.07634 0.06196 0.05396 0.10522 0.06374 0.05536
Std. 0.05854 0.0221 0.02158 0.01702 0.06188 0.01942 0.02244

5-
Flow Shop
Scheduling

Best 15668 15465.6 15495 15468.4 15979.4 15490.2 15485.6
Ave. 15730.29 15571.57 15590.65 15549.32 16277.22 15571.28 15578.49
Std. 257.494 108.422 138.254 93.484 488.93 135.91 100.354

6-
Personal

Scheduling

Best 2967.4 2898.8 2896.6 2880.8 3000.2 2964.2 2890.8
Ave. 3605.6 3442.742 3539.212 3437.486 3882.718 3517.064 3468.194
Std. 715.302 564.186 720.636 526.784 942.978 583.914 535.878

7-
Travelling
Salesman

Best 4186981 4186802 4186799 4185776 4196051 4186803 4185894
Ave. 4603859 4486248 4588936 4390375 4675219 4450383 4428025
Std. 333208.5 302030.4 323771.1 244873.2 366664.2 314300.3 274560.1

8-
Vehicle
Routing

Best 78972.54 76793.68 76719.48 76582.62 79865.86 76877.54 76695.84
Ave. 84219.32 81022.81 81005.14 80572.37 86780.34 81328.3 80776.38
Std. 4129.266 3796.242 4159.764 3427.38 5168.286 4087.136 3765.318

Note: Std: stands for standard deviation. Ave: strands for average. Bold fonts indicate the best results.

Overall, this result provides evidence that both the Page-
Hinkly statistical test and the extreme value-based reward
credit assignment mechanism contribute to the heuristic
selection mechanism. This is because the Page-Hinkly
statistical test helps the heuristic selection mechanism in
identifying the appropriate low level heuristic to be applied
by restarting heuristic selection mechanism from scratch if
the current low level heuristic is no longer the best. This
will avoid keep applying the low level heuristic with
highest score as it may be poorly performing at the current
state of solving process. The highest score achieved is
usually due to its application at beginning of the search
process. In addition, extreme value-based reward credit
assignment mechanism helps the heuristic selection
mechanism by saving the recent performance of the each
low level heuristic to be used during the low level heuristic
selection process. Therefore, DM4 is utilized in this work as
an on-line heuristic selection mechanism instead of other
heuristic selection mechanisms.

2) Q2: Can we generate for each instance different
acceptance criterion using GEP?

To answer this question, we compared the results obtained
by the generated acceptance criterion by GEP against four
well-known acceptance criteria in the scientific literature.
Our objective is to evaluate the impact of the evolved
acceptance criterion by the proposed GEP framework when
compared to other acceptance over different problem
domains. The considered acceptance criteria are:

Symbol Description
IO-HH Improving only (hill climbing) or equal: the generated

solution by the low level heuristics is accepted if it is equal,
or of better quality, to the previous one [5].

SA-HH Simulated Annealing: the generated solution by the low
level heuristics is always accepted if it is of better quality.
However, worse solutions are also accepted if they satisfy
the probability acceptance function R < exp(-δ/t), where R
is a random number between [0,1], δ is the change in the
solution quality, δ = |f(generated solution) − f(current
solution)| and t is the temperature of the system. t is
gradually decreased by β. In this work, β is set to 0.85 and

the initial temperature t = 50% of the value of the initial
solutions, as suggested in [38].

GD-HH Great Deluge: improved solutions generated by the low
level heuristics are always accepted. Worse solutions are
adaptively accepted if its objective value is less than the
level which is initially set to the value of initial solution.
During the optimization process, the value of level is
gradually decreased by β. Β = (f(initial solution)- estimated
(lower bound) / number of iterations) [5]. In this work, we
set the number of iterations to 1000.

TS-HH Tabu Search: solution generated by the low level heuristics
are accepted without taking into consideration their quality
[5]. Non improving low level heuristics are made tabu for a
certain number of iterations (set to 7 as suggested in [38]).
If the generated solution is better than the current one but
its corresponding low level heuristic is in the tabu list, the
solution will be accepted and the low level heuristic is
released from the tabu list [5].

To ensure a fair comparison and meaningful analysis,
throughout the experimental test, the heuristic selection
mechanism (dynamic multi-armed bandit-extreme value
based rewards), initial solution, the stopping condition and
computer resources are fixed the same for all frameworks.
The compared framework can be seen as several variants of
hyper-heuristic frameworks. The difference between these
frameworks is the utilized acceptance criteria only and they
are denoted as GEP-HH, IO-HH, SA-HH, GD-HH and TS-
HH.

The average of the best, average (Ave) and standard
deviation (Std) produced by the five hyper-heuristic
variants for all instances of the eight problem domains are
reported in Table 12 (the detailed results for each problem
domain are presented in Tables 13- 18 in the supplementary
file). As can be seen, with the same computational time,
across all problem domains, GEP-HH outperformed OI-
HH, SA-HH, GD-HH and TS-HH not only in terms of
solution quality and average, but also on standard deviation.
Indeed, GEP-HH is more consistent than OI-HH, SA-HH,

GD-HH and TS-HH (small standard deviation produced by
GEP-HH for all problem domains).

To obtain more statistical information and to find out
whether the performance of GEP-HH is statistically
different from OI-HH, SA-HH, GD-HH and TS-HH, the
Wilcoxon test [39] (pairwise comparisons) with a
significance level of 0.05 was conducted. Table 19-21 (see
the supplementary file) summarizes the p-value of the
Wilcoxon test of GEP-HH versus OI-HH, SA-HH, GD-HH
and TS-HH. For all tested instances, the results from GEP-
HH are statistically different (p-value < 0.05) from those
obtained by OI-HH, SA-HH, GD-HH and TS-HH. This
positive result supports the fact that GEP-HH produced
much better results compared to OI-HH, SA-HH, GD-HH
and TS-HH. In addition, one can easily see that, the
performance of OI-HH, SA-HH, GD-HH and TS-HH are
quite different from one instance to another. This is mainly
because each instance has different landscape structures and

consequently OI-HH, SA-HH, GD-HH and TS-HH are tailor
made to one or few instances, and thus work well across
these instances only (we suspect due to the number of
parameters that need to be tuned).

To summarize, the favorable results achieved by GEP-
HH suggest that GEP-HH is more general and consistent
when compared to IO-HH, SA-HH, GD-HH and TS-HH. In
fact, the consistency of GEP-HH in producing good results
over the ITC 2007, DVRP and HyFlex problem domains is
mainly attributed to its ability in dealing with different
instance landscape structures by generating for each
instance different acceptance criterion during the instance
solving process. Thus, the above observations are evidence
that generating for each instance different acceptance
criterion by using GEP can produce good results and
generalize well over different problem domains instead of
producing good results for one or just a few instances.

TABLE 12 THE RESULTS OF GEP-HH COMPARED TO OI-HH, SA-HH, GD-HH AND TS-HH

Domain # Name GEP-HH IO-HH SA-HH GD-HH TS-HH

1-
Exam

Timetabling

Best 8657.625 9245.125 8739.25 8730.25 8934.25
Ave. 8798.11 10293.34 9617.39 9839.72 10504.57
Std. 81.60 716.51 419.06 546.67 701.79

2- DVRP
Best 2272.85 2297.62 2303.99 2295.19 2314.57
Ave. 2342.88 2417.99 2419.78 2414.78 2425.22
Std. 39.27 72.90 61.58 64.67 113.72

3- MAX-SAT
Best 4 6.4 4.6 6.8 5.8
Ave. 11.474 18.376 17.166 20.368 18.54
Std. 8.546 11.562 10.118 9.454 9.938

4- Bin Packing
Best 0.03662 0.046248 0.0384 0.03734 0.03968
Ave. 0.05362 0.07248 0.06984 0.06184 0.06372
Std. 0.0206 0.02998 0.02716 0.02124 0.023

5-
Flow Shop
Scheduling

Best 15422.8 15482.4 15450.6 15482 15466.8
Ave. 15513.94 15782.98 15557.4 15571.88 15561.2
Std. 89.318 294.02 115.974 113.692 122.83

6-
Personal

Scheduling

Best 2916.4 2982 2970.6 2949.8 2961.8
Ave. 3188.11 3493.81 3626.49 3653.022 3606.182
Std. 410.868 608.774 704.01 687.44 695.35

7-
Travelling
Salesman

Best 4204139 4224061 4225965 4209410 4216264
Ave. 4351227 4477695 4495591 4691400 4621074
Std. 255450 302350.9 316347.9 353686.2 398509.4

8-
Vehicle
Routing

Best 78578.86 80289.84 79176.72 79371.45 79545.88
Ave. 81332.32 85753.21 83586.1 83450.86 83558.7
Std. 3120.806 5401.072 4168.894 3443.634 4103.702

Note: Std: stands for standard deviation. Ave: strands for average. Bold fonts indicate the best results.

B. Comparing GEP-HH results with the state of the art

This section presents the performance comparison between
GEP-HH and the state of the art of hyper-heuristics as well
as other bespoke methods that have been tested on ITC
2007, DVRP and HyFlex problem domains. To do so, this
section is divided into three subsections as follows. First
section compares the computational results of GEP-HH for
the ITC 2007 problem with the state of the art methods in
term of three performance indicators, i.e., the best, average
and statistical test. In second section, we compare the
results of GEP-HH for the DVRP with state of the art
methods from the best, average and statistical test
perspective. Third section compares the best results of
GEP-HH against the top five hyper-heuristic methods from
the CHeSC competition. The ranking system used by

CHeSC competition is also performed to calculate the score
of GEP-HH and the top five hyper-heuristic methods.

1) The comparison of GEP-HH results with the state of the
art methods for ITC 2007 problem

In this section, we assess the computational results of GEP-
HH against the best known results in the literature. The
considered methods are:

 The ITC 2007 winners :Witc1 [40], Witc2 [41], Witc3 [42],

Witc4 [43] and Witc5 [44])
 The Post-ITC 2007 methods: hyper-heuristics (HHitc6

[45], HHitc7 [46] and HHitc8 [47]) and bespoke methods
(Bitc9 [48], Bitc10 [49] and Bitc11 [49]).

The best and the instances ranking of GEP-HH results are
presented and compared with the ITC 2007 winners and
Post-ITC 2007 methods in Table 22 (best results are shown
in bold). In addition, for each instance, the relative error in
percentage (∆(%)) from the best known value found in the
literature is also calculated, ∆(%)=a-b/b * 100, where a is
the best result returned over 51 independent runs by GEP-
HH and b is the best known value found in the literature. It
should be note that the execution time (i.e. 10 minutes) of
all the compared methods (GEP-HH, ITC 2007 winners and
post ITC 2007 methods) are determined by the benchmark
software provided by the ITC 2007 organizers [12].

As Table 22 shows, GEP-HH provided new best results
for 4 out of 8 instances. From Table 22, we infer that,
although GEP-HH does not obtain the best results for all
instances (Datasets 1, 4, 6 and 8), overall, the quality of
solutions with regard to relative error is between 0.02 and
0.09. In addition, GEP-HH obtained the second rank for
these instances (Datasets 1, 4, 6 and 8). If we compare
GEP-HH with the ITC 2007 winners, on 7 (except Dataset
1) out of 8 instances, GEP-HH produces better quality

solutions compared to the ITC 2007 winners. Compared to
the hyper-heuristic methods in Table 22, we can see that,
across all instances, GEP-HH outperforms other hyper-
heuristic methods (HHitc6, HHitc7 and HHitc8). In Table 23,
we present the average results of GEP-HH and the
compared methods. Please note that only those that reported
the average results are considered in the comparison. As
shown in Table 23, the average results of GEP-HH are
better than other methods. Thus, we can conclude that the
relative error and instance ranking reveal that GEP-HH
generalizes well and obtains good results (with regard to
ITC 2007 instances).

To validate the performance of GEP-HH more
accurately, we have also performed a multiple comparison
statistical test [39] with regard to other methods (ITC 2007
winners and Post-ITC 2007 methods). To do so, we
performed Friedman and Iman-Davenport tests with a
critical level of 0.05 to detect whether there are statistical
differences between the results of these methods [39].

TABLE 22 RESULTS OF GEP-HH ON THE ITC 2007 EXAM TIMETABLING DATASETS

COMPARED TO ITC 2007 WINNERS and Post-ITC 2007 methods
GEP-HH ITC 2007 Winners Hyper-heuristics Bespoke methods

Instances Best ∆ (%) Rank Witc1 Witc2 Witc3 Witc4 Witc5 HHitc6 HHitc7 HHitc8 Bitc9 Bitc10 Bitc11
Dataset 1 4371 0.02 2 4370 5905 8006 6670 12035 6235 8559 6234 4775 4370 4633
Dataset 2 380 * 1 400 1008 3470 623 3074 2974 830 395 385 385 405
Dataset 3 8965 * 1 10049 13862 18622 - 15917 15832 11576 13002 8996 9378 9064
Dataset 4 15381 0.08 2 18141 18674 22559 - 23582 35106 21901 17940 16204 15368 15663
Dataset 5 2909 * 1 2988 4139 4714 3847 6860 4873 3969 3900 2929 2988 3042
Dataset 6 25750 0.03 2 26950 27640 29155 27815 32250 31756 28340 27000 25740 26365 25880
Dataset 7 4037 * 1 4213 6683 10473 5420 17666 11562 8167 6214 4087 4138 4037
Dataset 8 7468 0.09 2 7861 10521 14317 - 16184 20994 12658 8552 7777 7516 7461

Note: Best results are shown in bold. ∆ (%) represents the relative error in percentage from the best result. “*” means GEP-HH result is better than other
methods. “-“ indicates no feasible solution has been found.

TABLE 23 THE AVERAGE RESULTS OF GEP-HH COMPARED TO ITC 2007 WINNERS AND

POST-ITC 2007 APPROACHES FOR THE ITC 2007 INSTANCES
 GEP-HH Witc1 Witc2 Witc3 Witc5 HHitc8 Bitc9

Instances Average Average Average Average Average Average Average
Dataset 1 4392.82 4574.9 5914 9083.9 12819.2 6311 5032
Dataset 2 395.70 414 1091 3669.4 3925.8 400 404
Dataset 3 9060.19 10789.17 14336 19367.4 19812.1 13120 9484
Dataset 4 15700.19 21639 21846 26346.8 25728.8 18011 19607
Dataset 5 3020.58 3320.7 4167 4920.3 11176 3986 3158
Dataset 6 25973.10 27808.5 28361 29935 34028.89 27420 26310
Dataset 7 4203.29 4396.3 7010 11004.33 19669.3 6345 4352
Dataset 8 7639.07 7950.3 10796 14869.9 16720.7 8624 8098

Ave. Overall 8798.11 10111.61 11690.13 14899.63 17985.1 10527.13 9555.62
Ave. Rnk 1 4 5 6 7 3 2

Note: Bold fonts indicate the best results. Ave. Overall: the overall average for instances. Ave. Rnk: the
overall average for all instances ranking.

The p-value of Friedman (p-value=0.000) and Iman-
Davenport (p-value=0.000) are less than the critical level
0.05. This implies that there is a significant difference
between the compared methods (GEP-HH, ITC 2007
winners and Post-ITC 2007 methods). As a result, a post-
hoc statistical test (Holm and Hochberg statistical tests) is
used to detect the correct difference between the methods
(see [39] for more details). Table 24 (see the supplementary
file) summarizes the average ranking (the lower the better)
produced by the Friedman test for each method. GEP-HH is
ranked first with Bitc9, Witc1, HHitc8, Witc2, Witc3 and

Witc5 ranking the 2, 3, 4, 5, 6 and 7, respectively. The
adjusted p-values of Holm and Hochberg statistical tests for
the GEP-HH (the control method) and others in Table 25
(see the supplementary file) demonstrate that GEP-HH
outperforms Witc5, Witc3 and Witc2 (3 out of 6 methods)
with a critical level of 0.05 (adjusted p-value < 0.05) and
better than Witc5, Witc3, Witc2, HHitc8 and Witc1 (5 out of 6
methods) with a critical level of 0.10 (adjusted p-value <
0.10). However, the results in Table 25 indicate that, GEP-
HH does not outperform Bitc9 (adjusted p-value > 0.10).

To summarize, although the results of Holm and Hochberg
statistical tests (Table 25) suggest that GEP-HH is not
better than Bitc9, nevertheless, the results in Table 22
reveals that GEP-HH outperformed Bitc9 on 7 out of 8
instances and the average result in Table 23 is much better
across all instances. It worth noting that all of the compared
methods are tailor made to obtain the best results for one or
few instances only, whilst, one can easily see that GEP-HH
generalizes well across all instances.

2) The comparison of GEP-HH results with the state of the
art methods for DVRP

In this section, we evaluate the performance of GEP-HH
against the best available results in the scientific literature
(Ant colony (ANT) [35], greedy randomize adaptive serach
procedure (GRASP) [35], genetic algorithms (GA) [37],
tabu search (TS) [37] and genetic hyper-heuristic (GA-HH)
[36]) that have been tested on DVRP. To our knowledge,
only one hyper-heuristic method (GA-HH) has been tested
on DVRP. The computational time of the compared
methods is as follows: GEP-HH, GA, TS and GA-HH is 750
seconds, whilst ANT and GRASP is 1500 seconds. Table 26
gives the computational results of GEP-HH (best, the
relative error (∆(%)) and instance ranking) along with best
results obtained by other methods, while, Table 27 shows
the average results obtained by GEP-HH as well as the
compared methods (best results are shown in bold).

Considering the best results in Table 26, we can see that
GEP-HH achieved better quality results for 20 (except
tai75b) out of 21 instances compared to GA-HH. Observing
the best results of the bespoke methods (ANT, GRASP, GA
and TS) reported in Table 26, GEP-HH outperformed the
bespoke methods on 13 problem instances, while it is
inferior on 8 instances. Even though GEP-HH does not
outperform bespoke methods on all problem instances, the
average results of GEP-HH (Table 27) are, however, much
better than the bespoke methods across all instances, except
instance tai75d where the average results achieved by GA is
slightly better than GEP-HH. Considering an individual
comparison, GEP-HH outperformed ANT, GRASP, GA and
TS on 21, 21, 17 and 18 out 21 instances, respectively. In
addition, the relative error from the best known results

(Table 26) of GEP-HH for instance c100b, c150, c50, f71,
tai100c, tai100d, tai75b, tai75c and tai75d which are 0.92,
0.29, 1.77, 0.49, 0.67, 1.69, 0.05, 3.34 and 2.36,
respectively, are relatively small.

In addition to the above results, it is worth drawing some
statistical significant conclusions regarding the performance
of GEP-HH as well as the bespoke methods (ANT, GRASP,
GA, TS and GA-HH). Therefore, multiple comparison
statistical tests Friedman and Iman-Davenport with critical
level of 0.05 are carried out, followed by a post-hoc
statistical (Holm and Hochberg statistical tests) in case that
the results of Friedman and Iman-Davenport are less than
0.05. Thus, since the p-value of both tests is less than the
critical level 0.05, we further analyze the result to detect the
correct difference among the considered methods.

Table 28 (see the supplementary file) shows the average
ranking of GEP-HH as well as ANT, GRASP, GA, TS and
GA-HH produced by Friedman test (the lower the better).
From this table one can observe that, GEP-HH achieved the
first rank out of the six compared methods followed by GA,
GA-HH, TS, ANT and GRASP, respectively.

Table 29 (see the supplementary file) gives the adjusted
p-values of Holm and Hochberg statistical tests for each
comparison between GEP-HH (the controlling method) and
ANT, GRASP, GA, TS and GA-HH. The results of the
adjusted p-values reveal the following: GEP-HH is
statistically better than all of the bespoke methods (ANT,
GRASP, GA and TS) as well as the hyper-heuristic method
(GA-HH) with a critical level of 0.05. That is, no
comparison of GEP-HH, with any method obtained an
adjusted p-value equal to or higher than 0.05.

Overall, the above result implies that GEP-HH
outperforms the GA-HH hyper-heuristic and is competitive,
if not better (on some instances), to some bespoke methods
(ANT, GRASP, GA and TS). Also, it is worth noting that the
compared methods are specifically designed to produce the
best results for one or a few instances only. All of the above
observations are evidence that GEP-HH is able to produce
good quality results and generalize well over all instances,
instead of producing good quality results for just a few
instances.

TABLE 26 THE BEST RESULTS OF GEP-HH ON DVRP INSTANCES COMPARED TO THE LITERATURE
 GEP-HH ANT GRASP GA TS GA-HH

Instances Best ∆ (%) Rank Best Best Best Best Best
c100 957.157 * 1 973.26 1080.33 961.1 997.15 975.17
c100b 890.11 0.92 2 944.23 978.39 881.92 891.42 956.67
c120 1237.61 * 1 1416.45 1546.5 1303.59 1331.8 1245.94
c150 1322.13 0.29 2 1345.73 1468.36 1348.88 1318.22 1342.91
c199 1642.1 * 1 1771.04 1774.33 1654.51 1750.09 1689.52
c50 581.05 1.77 2 631.3 696.92 570.89 603.57 597.74
c75 956.17 * 1 1009.38 1066.59 981.57 981.51 979.25
f134 14563.4 * 1 15135.51 15433.84 15528.81 15717.9 14801.55
f71 281.62 0.49 2 311.18 359.16 301.79 280.23 288

tai100a 2180.24 * 1 2375.92 2427.07 2232.71 2208.85 2227.51
tai100b 2058.21 * 1 2283.97 2302.95 2147.7 2219.28 2183.35
tai100c 1525.31 0.67 2 1562.3 1599.19 1541.28 1515.1 1656.92
tai100d 1865.78 1.69 2 2008.13 1973.03 1834.6 1881.91 1834.4
tai150a 3290.12 * 1 3644.78 3787.53 3328.85 3488.02 3346.08
tai150b 2864.96 * 1 3166.88 3313.03 2933.4 3109.23 2874.83
tai150c 2510.38 * 1 2811.48 3110.1 2612.68 2666.28 2583.04
tai150d 2901.61 * 1 3058.87 3159.21 2950.61 2950.83 3084.52

tai75a 1764.45 * 1 1843.08 1911.48 1782.91 1778.52 1769.67
tai75b 1451.31 0.05 2 1535.43 1582.24 1464.56 1461.37 1450.44
tai75c 1453.28 3.34 3 1574.98 1596.17 1440.54 1406.27 1685.15
tai75d 1432.88 2.36 4 1472.35 1545.21 1399.83 1430.83 1432.87

Note: Bold fonts indicate the best results. ∆ (%): represents the relative error in percentage from the best result obtained by
other methods. “*” means GEP-HH result is better than other methods.

TABLE 27 THE AVERAGE RESULTS OF GEP-HH COMPARED TO THE LITERATURE FOR DVRP INSTANCES

 GEP-HH ANT GRASP GA TS GA-HH
Instances Average Average Average Average Average Average

c100 981.27 1066.16 1119.06 987.59 1047.6 1003.92
c100b 900.79 1023.6 1022.12 900.94 932.14 1020.02
c120 1338.04 1525.15 1643.15 1390.58 1468.12 1372.45
c150 1348.88 1455.5 1501.35 1386.93 1401.06 1413.04
c199 1675.10 1844.82 1898.2 1758.51 1783.43 1746.98
c50 593.26 681.86 719.56 593.42 627.9 632.73
c75 971.43 1042.39 1079.16 1013.45 1013.82 1019.01
f134 14875.15 16083.56 16458.47 15986.84 16582.04 14921.24
f71 289.41 348.69 376.66 309.94 306.33 299.59

tai100a 2265.55 2428.38 2510.29 2295.61 2310.37 2309.98
tai100b 2151.66 2347.9 2512.27 2215.39 2330.52 2221.37
tai100c 1595.65 1655.91 1704.4 1622.66 1604.18 1756.2
tai100d 1908.64 2060.72 2087.55 1912.43 2026.76 2029.37
tai150a 3368.75 3840.18 3899.16 3501.83 3598.69 3487.85
tai150b 2985.71 3327.47 3485.79 3115.39 3215.32 3068.75
tai150c 2684.87 3016.14 3219.27 2743.55 2913.67 2731.05
tai150d 2959.51 3203.75 3298.76 3045.16 3111.43 3251.97
tai75a 1783.58 1945.2 2005.44 1856.66 1883.47 1859.17
tai75b 1476.53 1704.06 1758.88 1527.77 1587.72 1502.07
tai75c 1602.2 1653.58 1674.37 1501.91 1527.8 1779.14
tai75d 1444.65 1529 1588.73 1422.27 1453.56 1445.84

Ave. Overall 2342.88 2561.14 2645.84 2432.80 2510.75 2422.46
Ave. Rnk 1 5 6 3 4 2

Note: Best results are shown in bold. Ave. Overall: the overall average for all instances. Ave. Rnk: the overall average
for all instances ranking.

3) The comparison of GEP-HH results with the top five
hyper-heuristics for the HyFlex problem domains

This section compares the results of GEP-HH with the top
five hyper-heuristics of the first cross-domain heuristic
search challenge (CHeSC) [14] (AdapHH [50], VNS-
TW[51], ML [52], PHUNTER [53] and EPH [54]). Table
30 shows the best, relative error (∆(%)) and instance
ranking of GEP-HH compared to AdapHH, VNS-TW, ML,
PHUNTER and EPH. Best results are shown in bold. Please
note that, the execution time (i.e. 10 minutes) of all the
compared methods (GEP-HH and the top five hyper-
heuristics) are determined by the benchmark software
provided by the CHeSC organizers [14].

The results in Table 30 demonstrates that, GEP-HH
produced better quality results for 2 instances, matched the
best results on 5 instances and being inferior on 23 out of
30 instances. This table also shows that, GEP-HH produced
second best results for 5 instances, third best results for 4
instances, fourth best results for 9 instances and sixth best
results for 5 instances. If we considering an individual

comparison, GEP-HH outperformed AdapHH, VNS-TW,
ML, PHUNTER and EPH on 7, 13, 6, 13 and 14 out of 30
instances, respectively.

In addition to the above results, we also calculated GEP-
HH score when compared to the top five hyper-heuristic
methods using the ranking system used by CHeSC [14]
using the meadian results (Table 31 see the supplementary
file). The ranking score (the higher, the better) of GEP-HH
and the top five hyper-heuristics for the HyFlex six problem
domains (MAX-SAT, BP, FS, PS, TSP and VRP) is
presented in Table 32. Last column in Table 32 indicates
the overall rank. The result in Table 32 reveals that GEP-
HH achieved third, fourth, third, third, fourth and third rank
for the SAT, BP, FS, PS, TSP and VRP domains,
respectively. Based on the overall rank, GEP-HH obtained
the fourth rank among the compared hyper-heuristic
methods. According to above results, GEP-HH produced
competitive results for the HyFlex problem domains.

Table 30 The best result of GEP-HH compared to the top five hyper-heuristics for the HyFlex problem domains

Instances

GEP-HH The top five hyper-heuristic frameworks from CHeSC competition
Best ∆(%) Rank AdapHH VNS-TW ML PHUNTER EPH

M
A

X
-

S
A

T

SAT 1 2 100 2 1 1 1 1 4
SAT 2 6 500 4 3 1 3 5 5
SAT 3 1 = 1 1 1 1 2 2
SAT 4 4 300 2 1 1 4 4 5
SAT 5 7 = 1 9 7 7 7 7

B
i n P

BP 1 0.0346 164.12 4 0.0131 0.0298 0.0323 0.0397 0.0430
BP 2 0.0067 139.28 4 0.0028 0.0036 0.0067 0.0034 0.0034

BP 3 0.0135 3275 4 0.0004 0.0136 0.0124 0.0178 0.0080
BP 4 0.1085 0.18 3 0.1083 0.1087 0.1084 0.1088 0.1083
BP 5 0.0198 538.7 4 0.0031 0.0238 0.0178 0.0318 0.0136

F
lo

w
 S

h
op

 FS 1 6224 0.16 3 6214 6230 6226 6221 6232
FS 2 26748 0.03 3 26757 26765 26744 26786 26738
FS 3 6303 = 1 6303 6303 6304 6303 6309
FS 4 11325 0.06 2 11318 11333 11338 11336 11328
FS 5 26514 * 1 26541 26535 26559 26600 26569

P
er

so
n

n
el

S

ch
ed

u
lin

g PS 1 11 = 1 17 13 11 13 16
PS 2 9726 4.05 6 9435 9347 9436 9624 9747
PS 3 3200 2.43 6 3142 3124 3138 3142 3142
PS 4 1360 0.74 2 1448 1370 1384 1350 1469
PS 5 285 * 1 295 290 300 290 310

T
ra

ve
li

n
g

S
al

es
m

an
 TSP 1 48194.9 = 1 48194.9 48194.9 48194.9 48194.9 48194.9

TSP 2 20845969.6 0.44 4 20752853.8 2084855.6 20793219.8 20754199.8 20941645.1
TSP 3 6805.8 0.14 4 6797.5 6796.0 6805.3 6796.0 6799.2
TSP 4 66549.8 0.89 4 66277.1 66830.2 66428.2 66641.4 65958.6
TSP 5 53174.4 2.15 6 52383.8 52896.5 52626.7 52172.0 52053.4

V
eh

ic
le

R

ou
ti

n
g VRP 1 69895.6 20.4 6 58052.1 68340.4 67622.1 61139.3 63932.2

VRP 2 13312.9 8.56 6 13304.9 13298.1 13298.4 12263.0 13284.0
VRP 3 142562.5 0.03 2 145481.5 144012.6 142517.0 143663.9 143510.8
VRP 4 20651.9 0.005 3 20652.3 20651.1 20651.1 20650.8 20650.8
VRP 5 146471.4 0.33 4 146154.0 146513.6 146200.8 146472.9 145976.5

Note: ∆(%): the relative error from the best value obtained by other method. “*” means GEP-HH result is better than other methods.
“=” means GEP-HH matched the best results.

Table 32 The ranking score of GEP-HH and the top five hyper-heuristics

HH SAT BP FS PS TSP VRP Overall Score
1 AdapHH 34.25 45 34.5 8 38.75 14 174.5
2 VNS-TW 34.25 3 30 35.5 15.75 4 122.5
3 ML 12.85 12 35.33 29 12 21 122.19
4 GEP-HH 10.85 4 33.83 23 16 17 104.69
5 PHUNTER 8.35 3 6 9.5 23.75 31 81.60
6 EPH 0.0 9 16 8.5 34.75 12 80.25

C. Discussion

The numerical results presented throughout this work
demonstrate that, across different combinatorial
optimization problems (exam timetabling, dynamic vehicle
routing and HyFlex problem domains) with fundamentally
different search spaces (static and dynamic), GEP-HH
achieved favorable results compared to the best available
methods in the literature. The improvements achieved by
GEP-HH across the considered problem domains are
evidence that GEP-HH is consistent and generalizes well
over all problem domains. The above results establish that,
on some instances, GEP-HH has better performance than
the best available methods in the literature. Hence, a
fundamental question naturally arises: why GEP-HH
obtains such results? We hypothesis that the capability of
GEP-HH in dealing with different problem domains and
achieving such results is due to the following two factors:

1- The ability of the proposed gene expression

programming algorithm to generate, for each instance,
different acceptance criterion during the optimization
process. Due to the fact that some instances of the
considered problem domains have a large search space, or
the search spaces are rugged and contain many local
optima because of the imposed constraints, it might be

that feasible regions are isolated by infeasible ones.
Therefore, by generating for each instance different
acceptance criterion during the instance solving process,
the hyper-heuristic is capable of escaping from the local
optima as well as effectively exploring the entire search
space. Generating algorithm components can reduce the
user intervention in finding the most effective
configuration and the facilitate algorithm configurations.
To summarize, the success of GEP-HH on all problem
domains validated our hypothesis in using GEP-HH to
automatically evolve the hyper-heuristic acceptance
criteria instead of using the human designed ones such IO,
SA, GD and TS.

2- Is partly due to the integration of the Page-Hinkly

statistical test as well as the extreme value-based reward
credit assignment mechanism in the heuristic selection
mechanism. As shown and analyzed throughout the
results section, the use of the Page-Hinkly statistical test
and extreme value-based reward credit assignment
mechanism with the heuristic selection mechanism has a
positive impact and produced good results compared to
other heuristic selection mechanisms. Therefore, the good
results obtained on all the considered problem domains
validated our hypothesis that these two components help

the heuristic selection to quickly select the suitable low
level heuristics during the instance solving process.

VI. CONCLUSIONS

The work presented in this paper has proposed a new
improvement based hyper-heuristic framework, gene
expression programming based hyper-heuristic (GEP-HH),
for combinatorial optimization problems. GEP-HH has two
levels, a high level strategy and a low level heuristic. The
latter consists of a set of human designed low level
heuristics that are used to perturb the solution of a given
instance. The former has two components, the heuristic
selection mechanism and the acceptance criterion. The
dynamic multi-armed bandit-extreme value based rewards
is utilized at the higher level to perform the task of selecting
a low level heuristic. Gene expression programming is used
as an on-line method to generate the acceptance criterion in
order to decide if the generated solution is accepted or not.

This work has shown that it is possible to use a heuristic
selection mechanism that utilizes a statistical test in
determining the most suitable low level heuristic as well as
generating a different acceptance criterion for each problem
instance. The efficiency, consistency and the generality of
GEP-HH has been demonstrated across eight challenging
problems, a static problem (exam timetabling), a dynamic
problem (dynamic vehicle routing problems) and the
HyFlex problem domains (boolean satisfiability, one
dimensional bin packing, permutation flow shop, personnel
scheduling, traveling salesman and vehicle routing), which
have very different search spaces. The experimental results
show that GEP-HH achieves highly competitive results, if
not superior to other methods, and that it generalizes well
over all domains when compared to other well-known
acceptance criteria (IO, SA, GD and TS) as well as state of
the art of hyper-heuristics and bespoke methods. The main
contributions of this work are:

- The development of the GEP-HH framework that

utilizes an on-line heuristic selection mechanism which
integrates a statistical test, demonstrating that this
selection mechanism is capable of selecting the most
appropriate low level heuristics using information
gathered during the instance solving process.

- The development of a framework to generate an
acceptance criterion that can be integrated with any
hyper-heuristic or meta-heuristic method, using gene
expression programming. This framework generates, for
each instance, a different acceptance criterion during
instance solving and obtains consistent, competitive
results that generalize well across eight different
problem domains.

- The development of a hyper-heuristic framework that is
not customized to specific problems classes and can be
applied to different problems without much
development effort (i.e. the user only needs to replace
the set of low level heuristics).

In this work, we have proposed an automatic programing
generation method to generate the of the high level strategy
component. In future work, we would also like to
investigate generating the low level heuristics and, perhaps,
placing them in competition with one another. If this were
successful, we will have a complete framework that is able
to tackle any problem, with very little human intervention

REFERENCES

[1] A. E. Eiben, R. Hinterding, and Z. Michalewicz, "Parameter

control in evolutionary algorithms," IEEE Transactions on
Evolutionary Computation, , vol. 3, pp. 124-141, 1999.

[2] Y.-S. Ong, M.-H. Lim, N. Zhu, and K.-W. Wong,
"Classification of adaptive memetic algorithms: a comparative
study," IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, vol. 36, pp. 141-152, 2006.

[3] J. E. Smith, "Coevolving Memetic Algorithms: A Review and
Progress Report," IEEE Transactions on Systems, Man, and
Cybernetics, Part B:, vol. 37, pp. 6-17, 2007.

[4] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J.
R. Woodward, "A Classification of Hyper-heuristic
Approaches," in Handbook of Metaheuristics. vol. 146, M.
Gendreau and J. Potvin, Eds., 2nd ed: Springer, 2010, pp. 449-
468.

[5] E. Talbi, Metaheuristics: From Design to Implementation:
Wiley online Library, 2009.

[6] Y. S. Ong and A. J. Keane, "Meta-Lamarckian learning in
memetic algorithms," IEEE Transactions on Evolutionary
Computation, , vol. 8, pp. 99-110, 2004.

[7] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and R.
Qu, "Hyper-heuristics: A Survey of the State of the Art,"
Journal of the Operational Research Society, to appear, 2013.

[8] E. Ozcan, B. Bilgin, and E. E. Korkmaz, "A comprehensive
analysis of hyper-heuristics," Intell. Data Anal., vol. 12, pp. 3-
23, 2008.

[9] K. Chakhlevitch and P. Cowling, "Hyperheuristics: recent
developments," Adaptive and Multilevel Metaheuristics, pp. 3-
29, 2008.

[10] Á. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag,
"Analyzing bandit-based adaptive operator selection
mechanisms," Annals of Mathematics and Artificial
Intelligence, pp. 1-40, 2010.

[11] C. Ferreira, Gene Expression Programming: Mathematical
Modeling by an Artificial Intelligence (Studies in
Computational Intelligence): Springer-Verlag New York, Inc.,
2006.

[12] B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis,
A. J. Parkes, L. D. Gaspero, R. Qu, and E. K. Burke, "Setting
the research agenda in automated timetabling: The second
international timetabling competition," INFORMS Journal on
Computing, vol. 22, pp. 120-130, 2010.

[13] P. Kilby, P. Prosser, and P. Shaw, "Dynamic VRPs: A study of
scenarios," Technical Report APES-06-1998, University of
Strathclyde, U.K.1998.

[14] G. Ochoa, M. Hyde, T. Curtois, J. Vazquez-Rodriguez, J.
Walker, M. Gendreau, G. Kendall, B. McCollum, A. Parkes, S.
Petrovic, and E. K. Burke, "HyFlex: A Benchmark Framework
for Cross-Domain Heuristic Search," in Evolutionary
Computation in Combinatorial Optimization, 2012, pp. 136-
147.

[15] G. Ochoa, R. Qu, and E. K. Burke, "Analyzing the landscape of
a graph based hyper-heuristic for timetabling problems," in
Proceedings of the 11th Annual conference on Genetic and
evolutionary computation GECCO '09, 2009, pp. 341-348.

[16] E. K. Burke, G. Kendall, and E. Soubeiga, "A Tabu-Search
Hyperheuristic for Timetabling and Rostering," Journal of
Heuristics, vol. 9, pp. 451-470, 2003.

[17] P. Cowling, G. Kendall, and E. Soubeiga, "A Hyperheuristic
Approach to Scheduling a Sales Summit," in Practice and
Theory of Automated Timetabling III. vol. 2079, E. Burke and

W. Erben, Eds., ed: Springer Berlin Heidelberg, 2001, pp. 176-
190.

[18] M. Ayob and G. Kendall, "A monte carlo hyper-heuristic to
optimise component placement sequencing for multi head
placement machine," in Proceedings of the International
Conference on Intelligent Technologies, InTech, 2003, pp. 132-
141.

[19] G. Kendall and M. Mohamad, "Channel assignment
optimisation using a hyper-heuristic," in Cybernetics and
Intelligent Systems, 2004 IEEE Conference on, 2004, pp. 791-
796.

[20] R. Bai and G. Kendall, "An investigation of automated
planograms using a simulated annealing based hyper-heuristic,"
in Metaheuristics: Progress as Real Problem Solvers, ed:
Springer, 2005, pp. 87-108.

[21] K. A. Dowsland, E. Soubeiga, and E. Burke, "A simulated
annealing based hyperheuristic for determining shipper sizes
for storage and transportation," European Journal of
Operational Research, vol. 179, pp. 759-774, 2007.

[22] E. Ozcan, Y. Bykov, M. Birben, and E. K. Burke,
"Examination timetabling using late acceptance hyper-
heuristics," in Evolutionary Computation, 2009. CEC'09. IEEE
Congress on, 2009, pp. 997-1004.

[23] G. Kendall and M. Mohamad, "Channel assignment in cellular
communication using a great deluge hyper-heuristic," in
Networks, 2004.(ICON 2004). Proceedings. 12th IEEE
International Conference on, 2004, pp. 769-773.

[24] K. Chakhlevitch and P. Cowling, "Choosing the fittest subset of
low level heuristics in a hyperheuristic framework," in
Evolutionary Computation in Combinatorial Optimization, ed:
Springer, 2005, pp. 23-33.

[25] M. Bader-El-Den and R. Poli, "Generating SAT local-search
heuristics using a GP hyper-heuristic framework," in
Proceedings of the Evolution artificielle, 8th international
conference on Artificial evolution, Tours, France, 2008, pp. 37-
49.

[26] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, "Grammatical
Evolution Hyper-heuristic for Combinatorial Optimization
problems," IEEE Transactions on Evolutionary Computation,
to apper, 2013.

[27] E. K. Burke, M. Hyde, G. Kendall, and J. Woodward, "A
genetic programming hyper-heuristic approach for evolving 2-
D strip packing heuristics," IEEE Transactions on Evolutionary
Computation, vol. 14, pp. 942-958, 2010.

[28] J. Arabas, Z. Michalewicz, and J. Mulawka, "GAVaPS-a
genetic algorithm with varying population size," in Proceedings
of the 1st IEEE Conference on Evolutionary Computation,
1994, 1994, pp. 73-78 vol. 1.

[29] V. Nannen and A. Eiben, "Efficient relevance estimation and
value calibration of evolutionary algorithm parameters," in
IEEE Congress on Evolutionary Computation, 2007, pp. 103-
110.

[30] A. E. Eiben and S. K. Smit, "Parameter tuning for configuring
and analyzing evolutionary algorithms," Swarm and
Evolutionary Computation, vol. 1, pp. 19-31, 3// 2011.

[31] E. Montero, M.-C. Riff, L. Pérez-Caceres, and C. Coello
Coello, "Are State-of-the-Art Fine-Tuning Algorithms Able to
Detect a Dummy Parameter?," in Parallel Problem Solving
from Nature - PPSN XII. vol. 7491, C. C. Coello, et al., Eds.,
ed: Springer Berlin Heidelberg, 2012, pp. 306-315.

[32] R. Qu, E. K. Burke, B. McCollum, L. T. G. Merlot, and S. Y.
Lee, "A survey of search methodologies and automated system
development for examination timetabling," Journal of
Scheduling, vol. 12, pp. 55-89, 2009.

[33] M. Ayob, A. Malik, S. Abdullah, A. Hamdan, G. Kendall, and
R. Qu, "Solving a practical examination timetabling problem: a
case study," Computational Science and Its Applications–
ICCSA 2007, pp. 611-624, 2007.

[34] P. Toth and D. Vigo, The vehicle routing problem vol. 9:
Society for Industrial Mathematics, 2002.

[35] R. Montemanni, L. M. Gambardella, A. E. Rizzoli, and A. V.
Donati, "Ant colony system for a dynamic vehicle routing
problem," Journal of Combinatorial Optimization, vol. 10, pp.
327-343, 2005.

[36] P. Garrido and M. C. Riff, "DVRP: a hard dynamic
combinatorial optimisation problem tackled by an evolutionary
hyper-heuristic," Journal of Heuristics, vol. 16, pp. 795-834,
2010.

[37] F. T. Hanshar and B. M. Ombuki-Berman, "Dynamic vehicle
routing using genetic algorithms," Applied Intelligence, vol. 27,
pp. 89-99, 2007.

[38] D. Ouelhadj and S. Petrovic, "A cooperative hyper-heuristic
search framework," Journal of Heuristics, vol. 16, pp. 835-857,
2010.

[39] S. García, A. Fernández, J. Luengo, and F. Herrera, "Advanced
nonparametric tests for multiple comparisons in the design of
experiments in computational intelligence and data mining:
Experimental analysis of power," Information Sciences, vol.
180, pp. 2044-2064, 2010.

[40] T. Müller, "ITC2007 solver description: a hybrid approach,"
Annals of Operations Research, vol. 172, pp. 429-446, 2009.

[41] C. Gogos, P. Alefragis, and E. Housos, "A multi-staged
algorithmic process for the solution of the examination
timetabling problem," Practice and Theory of Automated
Timetabling (PATAT 2008), Montreal, pp. 19-22, 2008.

[42] M. Atsuta, K. Nonobe, and T. Ibaraki, "ITC2007 Track 2, an
approach using general csp solver," Practice and Theory of
Automated Timetabling (PATAT 2008), pp. 19–22, 2008.

[43] G. De Smet, "Itc2007-examination track," Practice and Theory
of Automated Timetabling (PATAT 2008), pp. 19-22, 2008.

[44] A. Pillay, "Developmental Approach to the Examination
timetabling Problem," Practice and Theory of Automated
Timetabling (PATAT 2008), pp. 19–22, 2008.

[45] E. K. Burke, R. Qu, and A. Soghier, "Adaptive selection of
heuristics for improving constructed exam timetables," in
Practice and Theory of Automated Timetabling (PATAT 2010),
2010, pp. 136-151.

[46] N. Pillay, "Evolving Hyper-Heuristics for a Highly Constrained
Examination Timetabling Problem," in Practice and Theory of
Automated Timetabling (PATAT 2010), 2010, pp. 336-346.

[47] N. Sabar, M. Ayob, R. Qu, and G. Kendall, "A graph coloring
constructive hyper-heuristic for examination timetabling
problems," Applied Intelligence, vol. 37, pp. 1-11, 2012.

[48] C. Gogos, P. Alefragis, and E. Housos, "An improved multi-
staged algorithmic process for the solution of the examination
timetabling problem," Annals of Operations Research, pp. 1-
19, 2010.

[49] B. McCollum, P. McMullan, A. Parkes, E. K. Burke, and S.
Abdullah, "An Extended Great Deluge Approach to the
Examination Timetabling Problem," in 4th Multidisciplinary
International Scheduling Conference: Theory and Applications,
MISTA 2009, 2009, pp. 424-434.

[50] M. Misir, K. Verbeeck, P. De Causmaecker, and G. Vanden
Berghe, "An intelligent hyper-heuristic framework for chesc
2011," in The 6th Learning and Intelligent OptimizatioN
Conference (LION12). Paris, France, 2012.

[51] P. C. Hsiao, T. C. Chiang, and L. C. Fu, "A variable
neighborhood search-based hyperheuristic for cross-domain
optimization problems in CHeSC 2011 competition " CHeSC
2011 competition 2011.

[52] M. Larose, "A Hyper-heuristic for the CHeSC 2011," CHeSC
2011 competition 2011.

[53] F. Xue, C. Chan, W. Ip, and C. Cheung, "Pearl Hunter: A
Hyper-heuristic that Compiles Iterated Local Search
Algorithms," CHeSC 2011 competition 2011.

[54] D. Meignan, "An Evolutionary Programming Hyper-heuristic
with Co-evolution for CHeSC’11," CHeSC 2011 competition
2011.

